
HFS FOR z/VSE

Hierarchical File System

HFS allows users to store files on the IBM
z/VSE mainframe in a hierarchical manner
similar to that used on PCs and LINUX-based
systems. HFS's File Interception Facility also
performs file and format conversions.

User Guide and
Installation Notes

Release 2.3

Copyright © 2006–2021 by Connectivity Systems, Inc.

All Rights Reserved

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to the restrictions as
set forth in subparagraph (c(1(ii of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

This material contains confidential and proprietary material of Connectivity
Systems, Inc., hereafter referred to as CSI International and CSI, and may not be
used in any way without written authorization from CSI International. This
material may not be reproduced, in whole or in part, in any way, without prior
written permission from CSI International.

Permission is hereby granted to copy and distribute this document as follows:

• Each copy must be a complete and accurate copy.

• All copyright notices must be retained.

• No modifications may be made.

• The use of each copy is restricted to the evaluation and/or promotion of
CSI International’s HFS product or in accordance with a license
agreement.

HFS FOR z/VSE User Guide and Installation Notes
Release 2.3
First edition July 2006

Published by CSI International

Phone: 800-795-4914

Internet: http://www.csi-international.com

Product questions: info@csi-international.com

Technical support: support@csi-international.com

http://www.csi-international.com/
mailto:info@csi-international.com
mailto:support@csi-international.com

Table of Contents

Introduction .. 5
Overview.. 6
Release Changes.. 8
HFS-Lite .. 9

HFS File Structure ... 10
HFS Extent Allocation ... 10
HFS and Multiple Partitions ... 10
File Name Length ... 10
Periods and Name Extensions ... 10
Restricted Characters .. 11
Path Names ... 11
File Locking... 12
Lock Removal ... 12

HFS Operations .. 13
Requirements .. 13
Operations ... 14
Periodic Maintenance... 16

HFS File Management ... 17
HFS Maintenance Commands... 18

ACCESS .. 18
BACKUP ... 19
INITIALIZE ... 20
FILELIST.. 20
RELEASE ... 21
RESTORE ... 22
STATE ... 23
STATS ... 23
UNLOCK .. 24
WAKEUP .. 24

File Management Commands.. 25
CHANGEDIR ... 25
COPY... 25
DELETE.. 26
DIRECTORY.. 26
FIND .. 29
GETCWD.. 29
LIST... 30
LOADFILE ... 32
MAKEDIR .. 32
MOVE.. 33
OPTION .. 33
READFILE ... 34
REMOVEDIR... 35
RENAME .. 35
TREE ... 35
UPDIR ... 35

HFS File Journaling ... 36
Journal Commands .. 37
HFS Journal Process .. 38
Cache Processing .. 38
Cache Sizing .. 39
HFS Trace ... 39
Journal Management ... 40

7/25/2006 Hierarchical File System 2

Journal Management Commands ... 40
HFS File Interception Facility ... 43

Defining HLBLs.. 43
CSIHLABL Commands ... 44

OPTION ... 44
HLBL.. 45
HEXT ... 48
HSET.. 48
LIST ... 48
REMOVE ... 49

CSIHLABL – Examples ... 50
File Encryption ... 52

HLBL SECURE operand... 52
Establishing Keys.. 53
Security Considerations ... 54

File Conversion ... 55
General Commands .. 56

OPTION ... 56
LIST.. 56

File Definition.. 57
FILE... 57
FIELD.. 58
TABLE .. 60
END.. 61
Examples ... 62
Offsets .. 63

Conversion Rules .. 64
CONVERT .. 65
MOVE .. 67
LITERAL .. 70
ADD ... 71
INSERT ... 72
ENDINSERT... 73
END.. 73
IF .. 74
GOTO .. 75
LABEL .. 75
SKIP... 75
EXAMPLES .. 76

Loading SD Files... 78
CSIHFLOD – Commands.. 78

OPTION .. 78
ACCESS .. 79
MAKEDIR .. 79
CHANGEDIR ... 79
SD... 80
LIBR .. 81
TO|FROM (…).. 82

Examples ... 83
HFS File Recovery .. 84
HFS Online.. 86

Initial Screen ... 86
Tree View .. 87
View Display ... 89
Command Line ... 91

HFS API .. 93

7/25/2006 Hierarchical File System 3

Accessing HFS Through the API .. 93
HFS API Parameter List.. 94
HFS API Function Requests .. 96

A – Open Access to HFS... 96
B – Open File... 96
C – Get File ... 97
D – Put File.. 97
E – End File... 98
F – Delete File.. 98
G – Rename File.. 98
H – Change Directory... 98
I – Get Current Directory .. 99
J – Make Directory ... 99
K – Get Directory (first)... 99
L – Get Directory (next) ... 99
M – Backout File... 100
Y – Options.. 100
Z – Close Access to HFS... 101

HFS API Token Handling.. 102
File Formats (HFSAPI-FMT).. 102
HFS API Directory Response .. 103
HFS API Gotchas ... 104
HFS API HANDLE ABEND Routine ... 106
HFS API Test Program – CSIHFAPT.. 107

Installation .. 108
Error Messages ... 110

CSIHFLOD Messages .. 110
CSIHRCV Messages... 111
CSIHFSDX Messages ... 114
CSIHLBLO Messages .. 117
CSIHLMOD Messages ... 118
HFBAT Messages ... 118
HFSJ Messages ... 119
1xx Messages ... 121
2xx Messages ... 121
3xx Messages ... 122
4xx Messages ... 123
6xx Messages ... 123

Appendix A – Parameter Syntax .. 124
Appendix B – Undefined Files ... 125
Appendix C – CRLF Processing.. 126
Appendix D – Translate Tables ... 127

7/25/2006 Hierarchical File System 4

Introduction

HFS allows users of this product to store files on the IBM z/VSE mainframe in a hierarchical
manner like that used on PCs and LINUX-based systems. HFS allows users to:

• Organize files in a convenient, hierarchical manner
• Use more meaningful, long file names that include embedded spaces
• Use as many levels of directories and subdirectories as necessary to organize data
• Use a CICS transaction to view and maintain HFS files

In addition, if you want to take advantage of the File Interception Facility of HFS, you can:
• Encrypt your data using DES, DES3 or AES128 algorithms
• Store and retrieve files in a hierarchical manner
• Process fixed-length data records
• Process variable-length data records
• Generate AWS format output
• Convert from mainframe format to comma separated strings
• Convert from comma separated strings to mainframe format
• Convert from mainframe format to LINUX-like binary images
• Convert from LINUX-like binary images to mainframe format
• Generate HTML or XHTML output
• Generate XML output
• Process comma-separated, CRLF-delimited strings directly.

And it does all of this without requiring a single change to your existing legacy
programs—you don’t even have to recompile them; all you need to do is make
a simple change to the JCL, and HFS will take over.

The HFS File Interception Facility can:
• Intercept I/O to Sequential Disk Files (DTFSD)
• Intercept assembler DTFs
• Intercept files for both FCOBOL (old) and LE/COBOL (current)

Provided that z/VSE DTFs are used in a standard manner, the HFS Interception
Facility should work with any program in your shop, including those provided by
software vendors other than CSI International.

7/25/2006 Hierarchical File System 5

Overview

LINUX has it, the PC on your desktop has it, now z/VSE has it too. With HFS from CSI
International, you too can store your data in a hierarchical structure on the mainframe. And you
can use long file names (256 bytes) as well.

Let us take a look at a sample data structure:

<DIR> PRODUCTION
<DIR> Revenue Accounting

<DIR> Accounts Payable
Week to Date Payables (RA4104) 6,456,756
Month to Date Payables (RA4106) 22,325,102

. . .
<DIR> Accounts Receivable

Week to Date Receivables (RA4112) 104,722,345
. . .

<DIR> TEST
<DIR> Revenue Accounting

<DIR> Accounts Payable
Week to Date Payables (RA4104) 234,716
Month to Date Payables (RA4106) 865,112
. . .

To get to “Month to Date Payables,” the fully qualified path name is
 “/PRODUCTION/Revenue Accounting/Month to Date Payables (RA4106)” just like it is on a PC.
To switch to test data, change the high-order directory:
 “/TEST/Revenue Accounting/Month to Date Payables (RA4106).”

Perhaps you need to organize your data by division or location. You can easily do that, too:

<DIR> Chicago
<DIR> Revenue Accounting

<DIR> Accounts Payable
Week to Date Payables 13,234
. . .

<DIR> Accounts Receivable
. . .

<DIR> Minneapolis
<DIR> Revenue Accounting

<DIR> Accounts Payable
Week to Date Payables 87,313
. . .

<DIR> Accounts Receivable
. . .

As you will see later, with the HFS File Interception Facility it is easy to switch between
hierarchies in an HFS.

What kind of data can be stored in an HFS? Anything you want. At CSI, we have stored and
retrieved JPEGs., GIFs, HTML, JAVA, ASCII text, EBCDIC text, core dumps, reports, binary
files—literally any kind of data file you have. CSI’s website, www.csi-international.com, runs
on a z/VSE mainframe with Entrée and uses HFS to store its pages, scripts, and downloads.

With TCP/IP for VSE release 1.5E and higher, you can transfer data from an HFS to anywhere in
your network, and likewise you can move data into an HFS from anywhere.

7/25/2006 Hierarchical File System 6

http://www.csi-international.com/

But, the ability to organize data into a hierarchical structure isn’t much good unless you can
readily access it with your existing legacy applications, which brings us to …

HFS provides transparent access to its features from your legacy application
programs.

You don’t have to change a line of code, you don’t have to add a line of code, you don’t even
have to recompile your programs in order to access data stored in an HFS – a simple JCL change
will suffice. For example:

* $$ JOB JNM=somejob, . . .
// JOB somejob
// DLBL . . . whatever you need
// EXTEN
// DLBL HFSfile,’file name’,0,DA

T . . .

// EXTENT . . .
// EXEC CSIHLABL
HLBL OUTFILE,’/Chicago/Revenue Accounting …’,0,SD, -

HFS=HFSfile
/*
// EXEC YOURPROGRAM
 . . .
/&
* $$ EOJ

Now, when your program opens file “OUTFILE”, HFS latches on to it and processes accordingly.
If “OUTFILE” is opened for output, data is written to the HFS. If “OUTFILE” is opened for
input, data is read from the HFS and returns it to your program one record at a time, just like VSE
LIOCS.

“OUTFILE” in the above example can be a sequential disk file (DTFSD). HFS has been tested
with assembler programs, COBOL programs compiled with FCOBOL (old) or LE/COBOL
(current).

Provided that they use standard DTFSD processing, programs supplied by other
software vendors should work seamlessly with HFS files.

Data Encryption is easily accomplished. Add the “SECURE” operand to the HLBL and the file
will be encrypted in the HFS using either the DES, TDES or AES128 encryption algorithm –
your choice. Naturally, the file will be decrypted when it is read back in.

File Conversion. Using an easy to understand script process, HFS can convert data from and to
comma separated strings. LINUXX-like binary files can easily be created. Data can be
converted to HTML, XHTML or XML if need be. HFS can even generate AWS tapes for
transfer to other systems or for data archival.

And remember, HFS provides these features without requiring
any program changes on your part.

7/25/2006 Hierarchical File System 7

Release Changes

Release 2.2
• Add DISP(old|new …) to HLBL
• Provide support for HFS-Lite

Release 2.1

• LIST command in CSIHFBAT is now sorted and supports several new formats
• DIR command in CSIHFBAT is now sorted and supports several new formats
• Added FIND command to CSIHFBAT
• Added TREE command to CSIHFBAT
• Added APPEND option to HLBL
• Added RENAME option to HLBL
• Added %DATE and %TIME variables to HLBL name generation
• Provided for generic selection for input files using the HFS File Intercept Feature.
• Original date and time are preserved for file backup and restore
• Bug fixes and corrections thus uncovering new bugs

Release 2.0

• Added HFS File Intercept Feature (HLBL)
• Added Load of SD files into HFS
• Added Load of LIBR files into HFS

7/25/2006 Hierarchical File System 8

HFS-Lite

HFS-Lite consists of a restricted subset of the entire HFS system.

HFS-Lite provides sufficient capability for you to explore the basic file structure of HFS but
does not include all of features described in this document. Those parts of HFS that are not
included with HFS-Lite are indicated in the document below.

You will need to separately purchase HFS in order to take advantage of the complete and rich
feature set of HFS.

The following table summarizes the differences between HFS and HFS-Lite.

Feature HFS HFS-Lite
Create HFS Extents Yes Yes – single extents are restricted to 14

3390 cyl equivalents.
Create multiple HFS extents Yes Yes
Manipulate data in HFS Yes Yes
Journal for forward recovery Yes No
Cache HFS for improved performance Yes No
Recover damaged HFS data Yes Yes
Use the HLBL process to write data using a
standard VSE DTFSD

Yes No

File Conversion Yes No
Application Programming Interface (API) Yes No

 7/25/2006 Hierarchical File System 9

HFS File Structure

HFS Extent Allocation

An HFS extent (the HFS file) consists of 4096-byte records accessed by relative record
number using physical IOCS. Each EXTENT must contain at least one full cylinder, or
cylinder equivalent of DASD space.

An individual HFS extent can manage a maximum of 32,504,864 (x'01EFFC20') records
(992 FAT records * 32,768 records/FAT record). Each record is 4096 bytes, so a
maximum file can be about 133 gigabytes in size, which should be large enough for most
applications. If this is not large enough, the HFS can manage several files for the same
partition (currently a maximum of 64 files, for a total capacity of just under 4 terabytes).

Before an HFS extent can be used and files added to the HFS you must initialize the file
with the INITIALIZE command as described in “HFS File Management,” below.

HFS and Multiple Partitions

Multiple partitions can be used with HFS, and the system will coordinate add and update
activity between the partitions to prevent collisions. However, each partition must use the
same DLBL name for the HFS EXTENT. This restriction is enforced, and error message
312 will be issued if an attempt is made to open the same file a second time with a
different DLBL name.

Note: HFS extents cannot be shared between CPUs.

File Name Length

File and directory names can be up to 256 bytes long. This is the fully qualified path
name and includes the file name and any subdirectories comprising the name, followed
by an optional extension up to 8 bytes long.

Periods and Name Extensions

Periods are legal anywhere in file names as they are on PCs. The system checks for an
extension by scanning the name from right to left. If a period is found after 8 or fewer
bytes have been scanned, the string to the right of the period is treated as an extension.
Users should be careful when including periods in names so that unintended extensions
are not created.

HFS makes no assumptions about file contents based on a file name’s extension.
Extensions only have meaning in relation to other products and as understood by users.

 7/25/2006 Hierarchical File System 10

Restricted Characters

The following characters are not permitted in HFS file names:
* (asterisk), ? (question mark), \ (back slash), | (vertical bar),
/ (forward slash), : (colon), " (double quote), > (greater than), or
< (less than).

All other characters from the EBCDIC character set are allowed, including embedded
spaces. These are the same restrictions that apply to Internet URLs.

Note: Except for asterisk and question mark, these restrictions can be overridden by
using the OPTION batch command with the ALLOWNAME argument. This command is
described later in this manual.

Path Names

File names passed to HFS can be in the form of a path name. That is, HFS will examine
the file name and work its way through any embedded directories it finds. For example, if
you are positioned at “/directoryOne”, you can ask to read file
“/directoryTwo/subdirOne/file-name” without having to establish the current working
directory. Generally, the current working directory remains unchanged.

It is not necessary to specify the full path name in order to access or create a file. For
example, suppose again you are positioned at “/directoryOne”. The names
“/directoryOne/file-name” and “file-name” will both yield the same file.

HFS also maintains a special directory entry named “..”. This internal directory entry is
intended for recovery purposes and will not appear in response to a directory request. It
may, however, be useful when navigating through a file’s directory tree. It has the same
purpose as the “..” directory on a PC. For example, using a name of “../file-name” will
locate the file in the immediately higher level directory.

 7/25/2006 Hierarchical File System 11

File Locking

Whenever a file is accessed, it is locked to prevent damage from some other partition (or task, in
the case of a multi-tasking system such as CICS or TCP/IP). There are two types of locks: read
and write. Their interactions are as follows:

Read When a file is locked for read, other partitions (tasks) can also read it. Write,
Rename and Delete activity are prohibited.

Write When a file is locked for write, no other partition (task) can access it for any
purpose.

File locks are tracked globally in the VSE machine. That is, each task will check all
locks, not just its own, before permission to access the file is granted. The file is locked
when it is first opened for read or write processing. The lock is removed when the file is
closed.

The Write lock does not apply to a newly created file because, by design, it is not
accessible until closed. The last thing written to a new file is its directory entry, so it is
simply not possible to access a file until it has been properly closed by the creating task.

Lock Removal

It is possible that locks may remain active when an HFS-related partition is abnormally
terminated. One way to correct the locks that may remain from an abnormal termination
is to add a job containing the RELEASE command to a batch file running other
commands. The RELEASE command and a batch file example is described later in this
manual.

 7/25/2006 Hierarchical File System 12

HFS Operations

If you are using HFS as a companion product for other CSI offerings, such as Entrée, HFS
requirements should be described in the manual that came with the other CSI product. Even if
you do not intend to use HFS by itself, you should review the information presented below.

Requirements

1. To use FTP with HFS files, you must be running TCP/IP for VSE release 1.5E or higher

2. You must create a control file with a minimum of one cylinder of 3390 (or 3390
equivalent) DASD space. If you intend to make use of the file conversion facility of HFS
you will probably need more DASD space than this.

This file is named “HFSGEN” and to simplify operations its DLBL and EXTENT should
be placed in System Standard Labels. The HFSGEN file must be initialized prior to use.
Use the JCL below as a guide for initializing the file.

// DLBL HFSGEN, … if needed
// EXTENT … if needed
// LIBDEF *,SEARCH=(as needed
// EXEC CSIHFBAT
 INITIALIZE HFSGEN /*INITIALIZE MUST STAND ALONE*/
/*
// EXEC CSIHFBAT
 ACCESS HFSGEN /* CREATE DIRECTORIES FOR */
 MD ‘/$$FILE’ /* FILE DEFINITION */
 MD ‘/$$CONV’ /* CONVERSION SCRIPTS */
 MD ‘/$$XLAT’ /* TRANSLATION TABLES */
/*

The three “MD” (Make Directory) commands must be supplied as shown above, the
comments, of course, are optional.

Management of HFS files is described in more detail below.

3. IF you will be using the File Interception Facility of HFS, you will need to supply a
dummy DLBL and EXTENT for HFS’ use. The EXTENT need only encompass one
track. Nothing will ever be written to it or read from it but it is needed to satisfy
COBOL’s pre-open label checking routines. To simplify operations its DLBL and
EXTENT should be placed in System Standard Labels.

// DLBL HFS$$$,’DUMMY FILE’,0,SD
// EXTENT SYSnnn …

 7/25/2006 Hierarchical File System 13

4. IF you will be using the File Interception Facility of HFS, you must ensure that phase

CSIHLBLO is loaded into the SVA. This step should be added to your VSE IPL
procedures. Use the JCL below as a guide to loading this phase into the SVA.

// LIBDEF *,SEARCH=(as needed
SET SDL
CSIHLBLO,SVA

5. If you will be using the HFS File Interception Facility, you must have HFS Journaling

active in a VSE partition. Even if you do not use the File Interception Facility, HFS
journaling can provide siginificant performance improvements and its use is encouraged.
This can be run in either a static or dynamic partition. (See “HFS Journaling” below.)

6. You will need to define one or more HFS extents to contain the files processed by HFS

(See “Data Files” below.)

7. For each jobstream you wish to use with HFS File Interception Facility you will need to

define one or more HLBLs. HLBLs are very similar to DLBLs and are described in
more detail below.

Operations

For the HFS File Interception Facility to work properly, HFS Journaling must be active.
Activating Journaling will use JCL that looks like:

* $$ JOB JNM=HFSJRNL,CLASS=G,DISP=K
* $$ LST CLASS=L
// JOB HFSJRNL
// LIBDEF *,SEARCH=(as needed
// EXEC CSIHFJRN
 HFS CACHE (HFSGEN SIZE(100))
 HFS HLABL (500) /* label space for File Interception */
/*
/&
* $$ EOJ

HFS journaling is described in detail below.

Note, however, in the example above we also activated HFS Caching for the HFSGEN
file. You will probably want to activate caching for the data file(s) you define as well.

Each individual data file you create must be first initialized using CSIHFBAT (discussed
below under “HFS File Management.”

The amount of DASD allocated and the number of individual HFS extents is up to you.
Each HFS must be a minimum of one cylinder or cylinder equivalent of DASD. Other
restrictions were discussed above.

 7/25/2006 Hierarchical File System 14

For performance purposes you will probably want to cache the data file(s). See “HFS
File Journaling” below for more information.

The HFS File Interception Facility will not generate sub-directories for you. You will
need to establish the directory structure yourself using the batch commands available
with HFS. For example, the following sample JCL initializes a data file and creates a
directory structure for subsequent use.

// DLBL HFS01,’HFS01 DATA FILE’,99/365,DA
// EXTENT SYSnnn …
// LIBDEF *,SEARCH=(…
// EXEC CSIHFBAT
 INITIALIZE HFS01
/*
// EXEC CSIHFBAT
 ACCESS HFS01
 MD ‘/ACCOUNTING FILES’ /* MAKE ACCOUTING FILES */
 MD ‘/ACCOUNTING FILES/DAILY’
 MD ‘/ACCOUNTING FILES/WEEKLY’
 MD ‘/ACCOUNTING FILES/MONTHLY’
 MD ‘/ACCOUNTING FILES/MONTHLY/MONTH TO DATE’
 MD ‘/OTHER FILES’ /* MAKE OTHER FILES */
 MD ‘/OTHER FILES/MISC’
 . . .
/*

 7/25/2006 Hierarchical File System 15

The sample JCL fragment below illustrates what is needed to encrypt a data file using
HFS File Interception Facility.

 . . .
 Your DLBLs and TLBLs here
// DLBL HFS$$$$,’DUMMY FILE’,0,SD should be in
// EXTENT SYSnnn, … STDLABELS
// DLBL HFS01,’… “
// EXTENT SYSnnn, … “
// LIBDEF *,SEARCH=(as needed
// EXEC CSIHLABL,SIZE=AUTO
 HLBL CSITEST '/FIXTST FILE' 0 SD HFS=HFS01 -
 SECURE(DFLT)
/*
// EXEC your.program
 . . .

In this example, your program is assumed to be creating a file named “CSITEST.” By
adding the CSIHLABL step you inform HFS that it is to take over I/O for this file and
direct it instead to HFS01 under the name “/FIXTST FILE” and to encrypt it using the
default encryption method and key.

Assuming the DLBL and EXTENTs are included in Standard Labels, the bolded lines are
the only ones needed to produce encrypted output.

Periodic Maintenance

Some garbage may collect in an HFS over time. The most common cause for this is
when using the HFS File Interception Facility and your program for some reason, abend
or otherwise, does not properly close an output file. In this scenario, one or more garbage
records may accumulate in the HFS.

This can be easily fixed using the HFS File Recovery process (described in detail below).
You will need to occasionally run a job that looks something like:

* $$ JOB JNM=HFSRECOV,CLASS=W
// JOB HFSRECOV
// DLBL CSIHFDT,'HIERARCHICAL FILE',0,DA 99/365,DA
// EXTENT SYS009, . . .
// EXEC CSIHFBAT,SIZE=AUTO
 ACCESS CSIHFDT
 RECOVER DEEP NOAUTO NOTRACE
/*
/&
* $$ EOJ

You will probably need to run this often in a testing environment, but only occasionally
in production.

 7/25/2006 Hierarchical File System 16

HFS File Management

HFS File Management is done using a batch program, CSIHFBAT. This program is used for
HFS initialization, backup, restore, and recovery. Also, batch commands can be used to manage
the files and directories within the HFS.

The commands described in this section are listed under two categories, HFS Maintenance
Commands and File Management Commands. The RECOVERY and JRNL commands and
processes are described in a separate sections of this manual. Command syntax and
documentation conventions are described separately in “Appendix A – Parameter Syntax.”

Use the following JCL as a guide for running the CSIHFBAT program:

* $$ JOB JNM=HFSCMDS,CLASS=2
* $$ LST CLASS=L
// JOB HFSCMDS
// DLBL CSIHFDT,’HIERARCHICAL FILE’,0,DA
// EXTENT SYS009, . . . as needed
// ASSGN SYS009, . . . as needed
// LIBDEF *,SEARCH= . . . as needed
// EXEC CSIHFBAT,SIZE=AUTO
ACCESS CSIHFDT
DIR
LIST
STATS
/*
/&
* $$ EOJ

Other than for the INITIALIZE command (see below), the ACCESS command must be present
and must be the first command encountered by CSIHFBAT.

 7/25/2006 Hierarchical File System 17

HFS Maintenance Commands

ACCESS

ACCESS hfs.file [JOURNAL | NOJOURNAL] [SEP(char)]

Specifies the HFS file to process. This command must precede all other commands
(except INITIALIZE) in batch file programs.

hfs.file Specifies the DLBL name of the HFS file to be used.

JOURNAL|NOJOURNAL Indicates whether changes from this execution of

CSIHFBAT are to be journaled.

SEP(char) Can be used to change the directory separator character from

the default, forward slash (‘/’), to any other character except
for period (‘.’), which is reserved for internal use in HFS for
the file name extension.

This command can be abbreviated as ACC.

 7/25/2006 Hierarchical File System 18

BACKUP

 BACKUP {DISK(filename) | TAPE(filename) } -

[DETAIL | NODETAIL] –
 [UNLOAD | NOUNLOAD] –
 [PHYSICAL | NOPHYSICAL]

Backs up the HFS (the HFS file) to filename.

DISK(filename) Specifies that the backup is to be written to a disk
file. Either TAPE or DISK must be specified.

TAPE(filename) Specifies that the backup is to be written to a tape
file. The tape file will be written on SYS004.

DETAIL | NODETAIL Indicates the depth of information printed during the
backup.

UNLOAD | NOUNLOAD This operand applies to TAPE backup only and
determines whether the tape will be unloaded on
close or left positioned as is. This option can be used
to stack files on a single tape volume.

PHYSICAL | NOPHYSICAL Determines the type of backup to be created. A
PHYSICAL backup copies physical records from the
HFS file as is with no attempt to organize them into
individual files. A NOPHYSICAL backup copies the
HFS file by file (another term for this is logical
backup). The type of backup you specify determines
the type of restore that can be run.

You must use the PHYSICAL option for backups and restores intended for use
with the JOURNAL RECOVER process. Attempting a JOURNAL RECOVER
using the results from a restore of a NOPHYSICAL backup will result in
unpredictable behavior and certain data loss.

Do not perform a NOPHYSICAL (logical) backup while HFS is active in other
partitions or tasks. Doing so may produce an incomplete backup. Such a backup
will not contain:
• any portion of a file on HFS that is being written to while the backup is running.

The file will be invisible to the BACKUP process.
• any file that is being updated at the time the BACKUP process is running.
In addition, results are unpredictable for files being deleted or renamed during the
BACKUP process.

 7/25/2006 Hierarchical File System 19

INITIALIZE

INITIALIZE hfs.file [QUICK | NOQUICK]

Formats the HFS extent and prepares it for use with subsequent programs.

The INITIALIZE command must be run by itself in a single execution of
CSIHFBAT.

hfs.file This is the seven character DLBL name of the HFS file.

QUICK | NOQUICK QUICK assumes that the file has been previously initialized with

NOQUICK (the default). QUICK just resets the HFS file and
establishes an empty ROOT directory.

If QUICK is used on an unformatted extent (not previously
initialized), the HFS will fail in subsequent processing.

FILELIST

FILELIST {DISK(filename) | TAPE(filename)}

Lists the contents of a NOPHYSICAL backup file that was generated by the BACKUP
command.

DISK(filename) Lists the contents of the named disk file.

TAPE(filename) Lists the contents of the named tape file. The tape will be

processed using SYS004.

Note: The FILELIST command will not work against a PHYSICAL backup.

 7/25/2006 Hierarchical File System 20

RELEASE

 RELEASE {partition}

Removes file locks for a partition.

partition This is an optional parameter. If omitted, locks for the current partition

will be removed. If specified, locks for the specified partition will be
removed.

Individual HFS file locks will commonly be left hanging following an abend, or in a
testing environment when a program does not properly close the file. One way to correct
the locks that may remain is to add a separate job containing the RELEASE command to
a batch file that runs other commands. This approach is shown in the following example:

// JOB xxxxx
// <whatever your job needs>
 . . .
/& Use a separate VSE job to ensure it gets executed on abend
// JOB FIXLOCKS
// DLBL hfsfile
// EXTENT
// EXEC CSIHFBAT
ACCESS hfsfile
RELEASE
/*
/&
* $$ EOJ

Repeat the ACCESS and RELEASE commands as often as needed to clean up files if
more than one HFS extent is used in your process.

 7/25/2006 Hierarchical File System 21

RESTORE

RESTORE {DISK(filename) | TAPE(filename)} -
 [REPLACE | NOREPLACE] -
 [UNLOAD | NOUNLOAD] -
 [PHYSICAL | NOPHYSICAL]

Restores HFS files using data from a previous BACKUP command.

DISK(filename) Specifies that the restore operation is to use the

named disk file.

TAPE(filename) Specifies that the restore operation is to use the
named tape file.

REPLACE | NOREPLACE Determines the processing used when a duplicate
file name is encountered. Specify NOREPLACE if
you do not want existing files replaced with
information from a previous backup.

This option is ignored for a PHYSICAL Restore.

You can use this option to recover from an accidental
deletion of one or more files. Simply run RESTORE
using the NOREPLACE option, and any files found
on the backup that are not currently on the HFS file
will be replaced. All others will be bypassed.

UNLOAD | NOUNLOAD

Determines whether the tape will be unloaded on
close or left positioned as is. NOUNLOAD leaves it
positioned where it is so that if a subsequent file is
present on the tape volume, the tape is positioned
correctly to read it. This option is not relevant to a
DISK backup.

PHYSICAL | NOPHYSICAL Specifies the type of restore to run based on the
type of backup being used. A physical restore copies
physical records from the backup file as is with no
attempt to organize them into individual files.

RESTORE must be the first command to follow the ACCESS command in a job.
Other commands may follow the RESTORE command if needed. Failure to follow
this restriction will result in unpredictable behavior.

You must run INITIALIZE on the HFS file before performing a NOPHYSICAL
(logical) restore of an HFS. Otherwise, the HFS will fail on subsequent processing.

 7/25/2006 Hierarchical File System 22

STATE

STATE

Provides dumps of internal storage blocks which can be useful in debugging. Use
this command when requested by CSI Technical Support. There are no options for the
STATE command.

STATS

STATS

Prints HFS file statistics. There are no options for the STATS command. The resulting
output looks like:

SYSIN STATS
HBAT: FILE: C S I H F D T
HBAT: DATE: 0 3 / 1 4 / 0 5
HBAT: TIME: 0 7 : 0 2 : 4 4
HBAT: RECORDS MAX.: 7,800
HBAT: RECORDS USED: 25 0 0 . 3 2 %
HBAT: CACHE HITS: 12,456
HBAT: CACHE MISSES: 103
HBAT: FILE READS: 16
HBAT: FILE WRITES: 4

Explanation:

RECORDS MAX. Maximum records in the HFS extent.
RECORDS USED: Current number of records in use and the percentage used.
CACHE HITS: Directory Records retrieved from caching (see “HFS File

Journaling” below).
CACHE MISSES: Directory reads made when a record could not be located in the

cache.
FILE READS: Total reads issued for this HFS extent.
FILE WRITES: Total writes issued for this HFS extent.

 7/25/2006 Hierarchical File System 23

UNLOCK

 UNLOCK [ALL | NOALL] [SHOW | NOSHOW] -
 [FILE(name)] …

Individual files can be locked for either read or write access. This command can display
these locks, and optionally, clear them up.

ALL | NOALL UNLOCK ALL functions similar to the RELEASE command.

Locks for the current partition will be removed.

SHOW | NOSHOW Specify UNLOCK SHOW to receive a report of all locks for
the current partition.

FILE(name) Specifies a file to unlock. The FILE option may be repeated to
select multiple files. The name must be the fully qualified path
name for the file beginning with the ROOT directory.

WAKEUP

WAKEUP

Certain parts of the HFS are necessarily single-threaded. If problems occur, it is possible
that the HFS can be left in a state where one or more partitions or subtasks are in an
unending wait state. WAKEUP will free all outstanding waits that currently exist for the
HFS.

Use this command with caution and then only when directed by CSI Technical
Support. WAKEUP will issue diagnostic information that should be forwarded to
CSI Technical Support for analysis.

 7/25/2006 Hierarchical File System 24

File Management Commands

Use the following commands to manage files and directories within the HFS.

CHANGEDIR

 CHANGEDIR name

 Changes to the directory name as supplied with the command

This command can be abbreviated as CD.

COPY

COPY name1 TO(name2) [REPLACE | NOREPLACE].

Copies a file. Files can be copied within the same HFS extent, or they can be copied to a
different HFS extent depending on the format of the name supplied

name1 Specifies the name of the HFS file that will be copied.

This name is required.

name2 Specifies the target name for the copy operation. This
name is required.

REPLACE | NOREPLACE Governs processing when a duplicate file name is
encountered for the TO name. REPLACE allows
overwrites. NOREPLACE will not overwrite the file.

Names used in the COPY command can be made generic by using the following pattern-
matching characters:

* Matches any number of any characters
+ Matches any single character.

So, for instance, COPY ‘*.TXT’ TO(‘/TEXT DIR/*.TXT’) will copy all HFS files with
an extension of “.TXT” from the current directory to “/TEXT DIR.”

Optionally, the name of the HFS extent can be added to either name1 or name2 to
access a different HFS extent than currently specified. For example,
COPY 'FILE ONE' TO('HFS01:/DIRECTORYX/FILE ONE')will place a copy
of the input file into the “HFS01” extent.

 7/25/2006 Hierarchical File System 25

DELETE

DELETE name

Deletes the file name from HFS.

The DELETE command cannot be used to delete a directory. For directories, use
the REMOVEDIR command.

This command can be abbreviated as DEL.

DIRECTORY

DIRECTORY [STATS | NOSTATS] [SORT | NOSORT] –
 [FORMAT(3)] [MATCH(‘value’)]

Prints a list of the contents of the named or current working directory.

STATS | NOSTATS Specify STATS to obtain directory statistics. In the first

example below, the last four lines are a result of the STATS
option.

SORT | NOSORT The HFS directory is not maintained in a sorted fashion.
Specify NOSORT to print the directory in its actual order.
Specify SORT (the default) to cause the directory to be sorted
priot to printing.

FORMAT(3) Optionally, you can retrieve this information in a second format
– see examples below. The default is FORMAT(3).

MATCH(‘value’) This optional parameter can be used to select only a portion of
the contents of the directory for display. Wild card values can
be either:
 * - any number of any characters, or
 + - any single character.

For example, “*.HT*” will select every file whose extension
begins with “HT” – “HTM”, “HTML”, etc.

This command can be abbreviated as DIR.

 7/25/2006 Hierarchical File System 26

Example of FORMAT(1) directory including STATS:

SYSIN DIR STATS
HFS: DIRECTORY OF : ROOT
HFS: VARIABLE TABLE FILE 2763
HFS: AWSTST FILE 26394
HFS: <DIR> RENAMED DIR
HFS: VARIABLE CONVERT FILE 2586
HFS: DBLCVT SOURCE FILE 415
HFS: VARCVT SOURCE FILE 2586
HFS: TEST QUOTES SKIDOO 433
HFS: <DIR> BEAGLE BROTHERS
HFS: TEST QUOTES 433
HFS: TEST XTRACT 25600
HFS: TEST ALL 25600
HFS: COBOL FILE 11900
HFS: COBOL LOG 1400
HFS: TEST VARIABLE 433
HFS: 11 FILES
HFS: 2 DIRECTORIES
HFS: 100,110 BYTES
HFS: 139,264 BYTES (ACTUAL)

“BYTES (ACTUAL)” includes the HFS DASD overhead and will always be larger than
the number of data bytes, and is always a multiple of 4096.

Example of FORMAT(2) directory:

SYSIN DIR FORMAT(2)
HFS: DIRECTORY OF : ROOT
HFS: 2005/11/23 09:09:11 2,763 VARIABLE TABLE FILE
HFS: 2005/11/28 07:02:41 26,394 AWSTST FILE
HFS: 2005/11/29 11:24:53 <DIR> RENAMED DIR
HFS: 2005/11/30 07:59:28 2,586 VARIABLE CONVERT FILE
HFS: 2005/12/09 09:28:28 415 DBLCVT SOURCE FILE
HFS: 2005/12/15 13:16:39 2,586 VARCVT SOURCE FILE
HFS: 2005/12/22 08:23:56 433 TEST QUOTES SKIDOO
HFS: 2005/12/22 08:34:27 <DIR> BEAGLE BROTHERS
HFS: 2005/12/22 12:42:59 433 TEST QUOTES
HFS: 2005/12/29 08:09:21 25,600 TEST XTRACT
HFS: 2006/01/05 08:34:32 25,600 TEST ALL
HFS: 2006/01/05 08:49:21 11,900 COBOL FILE
HFS: 2006/01/05 08:49:21 1,400 COBOL LOG
HFS: 2006/01/10 11:45:44 433 TEST VARIABLE

Here we added file date and time, plus placed the file length in a standard location.

 7/25/2006 Hierarchical File System 27

Example of FORMAT(3) directory:

SYSIN DIR FORMAT(2)
HFS: DIRECTORY OF : ROOT
HFS: 2,763 VARIABLE TABLE FILE
HFS: 26,394 AWSTST FILE
HFS: <DIR> RENAMED DIR
HFS: 2,586 VARIABLE CONVERT FILE
HFS: 415 DBLCVT SOURCE FILE
HFS: 2,586 VARCVT SOURCE FILE
HFS: 433 TEST QUOTES SKIDOO
HFS: <DIR> BEAGLE BROTHERS
HFS: 433 TEST QUOTES
HFS: 25,600 TEST XTRACT
HFS: 25,600 TEST ALL
HFS: 11,900 COBOL FILE
HFS: 1,400 COBOL LOG
HFS: 433 TEST VARIABLE

This is essentially FORMAT(2) but dropping the file date and time.

Example of FORMAT(4) directory:

SYSIN DIR FORMAT(4)
 HFS: DIRECTORY OF : ROOT
 HFS: 2006/02/10 07:52:37 <DIR> DIRECTORY 001
 HFS: 2006/02/10 07:52:38 <DIR> DIRECTORY 002
 HFS: 2006/02/10 07:52:38 <DIR> HI THERE
 HFS: 2006/02/28 08:52:08 <DIR> JOURNALLED DIR
 HFS: 2006/02/10 07:52:38 <DIR> NEW DIRECTORY
 HFS: 2006/02/10 07:52:38 6.9K EBC FIX 80 BIM$DADS.A
 HFS: 2006/02/10 07:52:38 168.5K EBC FIX 80 BIMBMS.A
 HFS: 2006/02/10 07:52:38 31.7K EBC FIX 80 BIMCHDAY.A
 HFS: 2006/02/10 07:52:38 7.9K EBC FIX 80 BIMDYNDS.A
 HFS: 2006/02/10 07:52:38 1.3K EBC FIX 80 BIMFCB.A
 . . .
 HFS: 2006/02/15 15:23:06 62.5K EBC VAR DFHDUMP FILE
 HFS: 2006/02/10 07:52:39 25.0K EBC BIN LOADED FILE
 HFS: 2006/02/28 09:45:22 1.2M ASC BIN TEST ASCII FILE

Here we sacrificed some accuracy on the file size to be able to include additional
information about each file. We show:
 EBC – EBCDIC data
 ASC – ASCII data

 and the file type, which can be:
 FIX lll - Fixed length data and record length
 VAR - Variable length data
 BIN - Binary data, format unknown or unspecified.

 7/25/2006 Hierarchical File System 28

FIND

FIND MATCH(‘value’) [FORMAT(3)]

Can be used to locate a specific file, or group of files in the HFS.

MATCH(‘value’) This parameter is used to select the file or files you wish to

locate. The ‘value’ can be generic, using either of:
 * - any number of any characters, or
 + - any single character.

For example, “*.HT*” will select every file whose extension
begins with “HT” – “HTM”, “HTML”, etc.

FORMAT(3) There are three possible formats available. These are described
in greater detail with the LIST command below. The default is
FORMAT(3).

GETCWD

 GETCWD

Prints the fully qualified path name of the current working directory. There are no
operands for this command.

 7/25/2006 Hierarchical File System 29

LIST

 LIST [SORT | NOSORT] [FORMAT(3)]

Prints an indented list of the contents of the HFS extent.

SORT | NOSORT The NOSORT option is retained for compatibility with previous

releases of HFS. Using the SORT option provides a better
display of the contents of the HFS extent.

FORMAT(3) There are three formats available. Each is shown in a separate
example below. The default is FORMAT(3).

Example of LIST FORMAT(1):

SYSIN LIST FORMAT(1)
<DIR> DIRECTORY 001
 <DIR> SUBDIR 001
 <DIR> SUBSUBDIR 001
 5.8K JRNL FILE FIVE
 19.5K JRNL FILE SIX
 5.1K JRNL FILE SEVEN
<DIR> DIRECTORY 002
<DIR> HI THERE
<DIR> JOURNALLED DIR
 2.3K JRNL FILE FOUR
 2.3K JRNL FILE ONE
 2.3K JRNL FILE THREE
 2.3K JRNL FILE TWO
<DIR> NEW DIRECTORY
 6.9K BIM$DADS.A
 168.5K BIMBMS.A
 31.7K BIMCHDAY.A
 7.9K BIMDYNDS.A
 1.3K BIMFCB.A
 145.7K BIMIOGEN.A
 . . .
HBAT: 7 DIRECTORIES
HBAT: 79 FILES
HBAT: 2,933,543 BYTES (DATA)

Here the file size is abbreviated to make more room for the file name on a single print
line.

 7/25/2006 Hierarchical File System 30

Example of LIST FORMAT(2):

SYSIN LIST FORMAT(2)
2006/02/10 07:52:37 <DIR> DIRECTORY 001
2006/02/10 07:52:37 <DIR> SUBDIR 001
2006/02/10 07:52:37 <DIR> SUBSUBDIR 001
2006/02/10 07:52:38 6,000 JRNL FILE
FIVE
2006/02/10 07:52:38 20,000 JRNL FILE SIX
2006/02/10 07:52:38 5,280 JRNL FILE SEVEN
2006/02/10 07:52:38 <DIR> DIRECTORY 002
2006/02/10 07:52:38 <DIR> HI THERE
2006/02/28 08:52:08 <DIR> JOURNALLED DIR
2006/02/10 07:52:37 2,400 JRNL FILE FOUR
2006/02/10 07:52:37 2,400 JRNL FILE ONE
2006/02/10 07:52:37 2,400 JRNL FILE THREE
2006/02/10 07:52:37 2,400 JRNL FILE TWO
2006/02/10 07:52:38 <DIR> NEW DIRECTORY
2006/02/10 07:52:38 7,120 BIM$DADS.A
2006/02/10 07:52:38 172,640 BIMBMS.A
2006/02/10 07:52:38 32,560 BIMCHDAY.A
2006/02/10 07:52:38 8,160 BIMDYNDS.A
2006/02/10 07:52:38 1,360 BIMFCB.A
2006/02/10 07:52:38 149,200 BIMIOGEN.A

Here the file date and time are shown, and the file size is accurately listed.

Example of LIST FORMAT(3):

SYSIN LIST SORT FORMAT(3)
 <DIR> DIRECTORY 001
 <DIR> SUBDIR 001
 <DIR> SUBSUBDIR 001
 6,000 JRNL FILE FIVE
 20,000 JRNL FILE SIX
 5,280 JRNL FILE SEVEN
 <DIR> DIRECTORY 002
 <DIR> HI THERE
 <DIR> JOURNALLED DIR
 2,400 JRNL FILE FOUR
 2,400 JRNL FILE ONE
 2,400 JRNL FILE THREE
 2,400 JRNL FILE TWO
 <DIR> NEW DIRECTORY
 7,120 BIM$DADS.A
 172,640 BIMBMS.A
 32,560 BIMCHDAY.A
 8,160 BIMDYNDS.A
 1,360 BIMFCB.A
 149,200 BIMIOGEN.A

 7/25/2006 Hierarchical File System 31

LOADFILE

LOADFILE name [REPLACE | NOREPLACE] [DELIM(‘/+’)]

Instructs the batch program to load a file from the card images that follow until a card
containing the DELIM(xx) in column 1 is encountered.

Name Specifies the name of the resulting file in the HFS.

REPLACE | NOREPLACE Governs processing when a duplicate file name is

encountered. REPLACE allows overwrites.
NOREPLACE will not overwrite the file.

DELIM(‘/+’) Defines the delimiting characters that will cause the
batch program to recognize end of file. The default,
“/+,” should be sufficient in most cases.

Blank lines will not be passed from the parser to HFS, so blank lines cannot be inserted
into the file through this mechanism.

You must add an extra line following the trailing delimiter. Normally this is a comment
line (beginning with ‘;’), as shown in the following example:

LOADFILE 'LFILE1.TXT'
This file was loaded from cards and should go into
the HFS as fixed-length 80-byte records.
/+
; Extra line required

MAKEDIR

MAKEDIR name

Creates a new directory of the name given in the command.

This command can be abbreviated as MD.

 7/25/2006 Hierarchical File System 32

MOVE

MOVE name1 TO(name2) [REPLACE | NOREPLACE]

Moves a file. The format of the operands of this command are identical to the COPY
command described above. The difference between COPY and MOVE is that for
MOVE, at end of file, the original file referenced by name1 is deleted from the HFS.

Refer to the COPY command for a description of the operands and name conventions.

OPTION

OPTION [IGNOREDUP | NOIGNOREDUP] –
 [ALLOWNAME | NOALLOWNAME]

Use this command to change the default behavior of CSIHFBAT.

IGNOREDUP |
NOIGNOREDUP

By default, an error is generated whenever you attempt to
create a directory that already exists on the HFS. Specify
NOIGNOREDUP to bypass these error messages.

ALLOWNAME |
NOALLOWNAME

By default, names are edited to disallow certain special
characters. This restriction is described above under “File
Management.” Specify ALLOWNAME to remove these
naming restrictions.

 7/25/2006 Hierarchical File System 33

READFILE

READFILE name [DUMP | NODUMP] [ASCII | NOASCII] -
 [DEBUG | NODBUG] [RECFM(format)]

Prints the contents of a file on the HFS.

Name Specify the file name to be printed.

DUMP | NODUMP DUMP creates a 32-byte-wide hex-and-character display of

the file’s contents. DUMP format is assumed when using
the RECFM option, see below.

By default, the READFILE command assumes the file is in
character with fixed 80 character line lengths.

ASCII | NOASCII ASCII causes the character portion of the DUMP output to
be translated from EBCDIC to ASCII.

DEBUG | NODEBUG DEBUG is intended for use by CSI Technical Support.

RECFM(format) Specifies special formatting options for printing.
RECFM(VAR) Request the file be formatted for

printing as a standard variable
length file, that is with a four byte
LLBB preceding each record.

RECFM(FIX len) Request the file be formatted for
printing as a fixed length file. You
must supply the record length with
this option.

RECFM(AWS) Request the file be formatted for
printing as an .AWS file.

RECFM(LF) When printed, record-like breaks
will occur whenever a CRLF
sequence is encountered in the file.

RECFM(HFS) The nature of the file is recorded in
the HFS for files generated by the
HFS File Interception Facility.

This information may not be
available for files loaded to the HFS
by FTP or some other mechanism.

 7/25/2006 Hierarchical File System 34

REMOVEDIR

REMOVEDIR name

Removes the named directory from the HFS.

This command can be abbreviated as RD.

The named directory must be empty, that is, it cannot contain any files of subdirectories.
If the directory is not empty, an error will be generated and the command will be rejected.

RENAME

RENAME name1 TO(name2)

Renames a file from its current name to a new name.

name1 Specifies the name of the existing file.

TO(name2) Specifies the new name for the existing file. By adding the appropriate

path information, you can direct the file to a different directory or
subdirectory within the HFS extent.

TREE

 TREE

This command will print the directory structure, or tree without listing the files contained
within each directory or sub-directory. The output is similar to LIST FORMAT(1) as
described above.

UPDIR

UPDIR

Moves up one directory level.

This command can be abbreviated as UD.

 7/25/2006 Hierarchical File System 35

HFS File Journaling

HFS File Journaling provides you with the ability to:

• Journal all HFS update activity for purposes of forward recovery.
• Cache HFS file directories or entire HFS extents to improve performance.
• Create a label area to hold HLBLs (see below) for the HFS File Interception Facility.

Journaling is not available with HFS-Lite.

Journaling functions are handled by the program CSIHFJRN, which must run in its own partition.
It can be run in either a dynamic or static partition. It can be brought up at any time, but ideally it
should be started before the first HFS access in the VSE machine.

Use the following sample JCL as a guide for running CSIHFJRN:

* $$ JOB JNM=xxxxxxx,CLASS=x
* $$ LST CLASS=x
// job xxxxxxxx
// DLBL HFSJRNA,’HFS Journal A’,0,SD
// EXTENT SYSnnn, . . . as needed
// DLBL HFSJRNB,’HFS Journal B’,0,SD
// EXTENT SYSnnn, . . . as needed
// LIBDEF as needed
// EXEC CSIHFJRN
HFS JOURNAL (BUFFERS(500))
HFS CACHE (HFSGEN SIZE(100) CACHEALL)
HFS HLABL (500)
/*
/&
* $$ EOJ

 7/25/2006 Hierarchical File System 36

Journal Commands

Journal commands use the same syntax as other batch commands used in HFS and which is
described in “Appendix A – Parameter Syntax.”

HFS JOURNAL (BUFFERS(256) [TRACE(500)] –
 [FORCE | NOFORCE])

This command activates Journaling and establishes the number of memory buffers that
will be allocated for journal activity.

BUFFERS(256) Specifies the number of buffers reserved for journal

processing. The default is 256.

TRACE(500) Specifies the number of buffers reserved for HFS diagnostic
tracing. The default is 500.

Note, this space is not allocated in the Journal partition until a
trace command is received from the console. The space is
then separately allocated from the partitions 31-bit address
space.

FORCE | NOFORCE In the event that the previous execution of CSIHFJRN failed,
either due to program failure or operator cancel, the journal
process may have difficulty restarting itself. The FORCE
option overcomes this difficulty.

Use this option sparingly, as data loss on the journal file(s)
may occur.

HFS CACHE (filename SIZE(nnn) [CACHEALL | NOCACHEALL])

Use this command to activate caching for an HFS extent.

filename Specifies the seven character DLBL name for the HFS extent

to be cached.

SIZE(nnn) Specifies the size of the cache in buffers for this file. Cache
size is discussed in more detail below.

CACHEALL |
NOCACHEALL

Causes HFS to cache all records written to the file as opposed
to only directory records. Use this for a control HFS or for an
HFS that is heavily hit for read processing, but rarely written
to.

 7/25/2006 Hierarchical File System 37

HFS HLABL (number)

This reserves label space in 31-bit GETVIS in the Journal partition for use by
INTERCEPTOR in any of the other partitions in your VSE system.

number This reserves label space in 31-bit GETVIS in the Journal partition for use

by the HFS File Interception Facility. This number represents the
maximum labels that are supported by the HFS File Interception Facility at
any one time. Since labels can be freed at job step or end of job, this
number does not have to be excessively large (see also “Defining HLBLs”
below).

HFS Journal Process

Once started, the journal process is automatic. You can message the partition and enter
one of the following commands at the VSE console:

CLOSE Closes the current journal and exits the program
 SWITCH Causes a Journal switch to take place immediately
 STATS Obtain a statistics report on the console (same as close)
 TRACE Generate diagnostic traces, see below.

Once closed, no further journal activity will take place until the journal process is
restarted. A program that is currently using HFS may receive warning messages when
attempting to modify the HFS file.

No attempt was made to prevent overwriting journal files that are not backed-up. When
the program is initiated, it will overwrite the oldest of the two journal files. When
journals are switched, the program does so without concern about the state of the other
journal file.

Cache Processing

Caching is primarily used with directory records in the HFS file – this can be overridden
with the CACHEALL option. Caching will reduce I/Os needed to read records from the
HFS. Whenever a record is updated it will still be written to DASD immediately as well
as refreshed in the cache.

The HFS cache is maintained in most recently used to least recently used order. Over
time, the common portions of the HFS directory (the root directory) will tend to remain at
or near the top of the cache. Infrequently used records will migrate deeper into the cache
and ultimately be deleted (assuming that the cache is not large enough to contain the
entire directory).

You can establish different sized caches for different HFS files. You must supply an HFS
CACHE parameter card for each file you wish to cache.

 7/25/2006 Hierarchical File System 38

Cache Sizing

It is not necessary to provide a cache sufficient to hold the entire HFS file directory.
Because the cache is organized in most recently used to least recently used order, the
common elements of the file will tend to remain in the cache and near the top of the
cache index. Use the LIST and the STATS command (see “HFS File Management”) to
help determine the most effective cache size.

HFS Trace

HFS tracing is primarily intended for the use of CSI Technical Support as a diagnostic
tool to assist in problem resolution. It is controlled through the console interface to
CSIHFSJRN. Tracing recognizes the following four commands:

TRACE Queries the current trace status.

TRACE ON Starts the trace. All subsequent HFS activity will be traced.

TRACE OFF Stops the trace.

TRACE PRINT Prints the contents of the trace buffers to the POWER LST queue

to job named “HFSTRACE” which is placed into class L, disp H.

 Sample trace report:

H F S T R A C E
07.26.10 F5 004CF200 00:OPEN 0000000000 RET=00 FILE=CSIHFDT
07.26.10 F5 004CF200 02:CHANGE DIRECTORY 0000000000 RET=00
FN=/
07.26.10 F5 004CF200 07:DIRECTORY 00B0000000 RET=00
FN=/
07.26.10 F5 004D2480 00:OPEN 0000000000 RET=00 FILE=CSIHFDT
07.26.10 F5 004D2480 02:CHANGE DIRECTORY 0000000000 RET=00
FN=/DIRECTORY ONE
07.26.10 F5 004D2480 07:DIRECTORY 00B0000000 RET=00
FN=/DIRECTORY ONE
07.26.10 F5 004D2480 07:DIRECTORY 0070000000 RET=00
FN=/DIRECTORY ONE
07.26.10 F5 004D2480 07:DIRECTORY 0070000000 RET=00
FN=/DIRECTORY ONE
07.26.10 F5 004D2480 07:DIRECTORY 0070000000 RET=00
FN=/DIRECTORY ONE
07.26.10 F5 004D2480 07:DIRECTORY 0070000000 RET=04
FN=/DIRECTORY ONE
07.26.10 F5 004D2480 01:CLOSE 0070000000 RET=00
FN=/DIRECTORY ONE
07.26.10 F5 004CF200 07:DIRECTORY 0070000000 RET=00
FN=/
07.26.10 F5 004D2480 00:OPEN 0000000000 RET=00 FILE=CSIHFDT
07.26.10 F5 004D2480 02:CHANGE DIRECTORY 0000000000 RET=00
FN=/DIRECTORY TWO

 7/25/2006 Hierarchical File System 39

Journal Management

Two journal files are used, HFSJRNA and HFSJRNB. These are sequential disk files and
processed throughout the journal process by standard VSE LIOCS using DTFSDs. These files
need to be initialized before they are first used.

When starting up, CSIHFJRN chooses between the two journal files by opening both and
selecting the oldest one, that is the one with the least recent date and time stamp. Its choice is
displayed on the system console during start up.

When a journal file fills up it is automatically switched with its counterpart. This switch must
occur and no attempt is made to determine if the other file has been backed up. You can also
manually cause the switch to occur through the console interface as described above.

You can use any utility program you wish to backup the journal file, but due to processing
considerations unique to the journaling environment, CSI strong recommends that you use
CSIHFBAT and the Journal Backup function described below for backing up the journal files to
tape.

Ideally the journal file will contain a normal end-of-file marker. However, with a long running
operation like journaling, this will not always be the case. An abnormal termination of
journaling, such as a forced IPL of the VSE machine, may leave the journal file without its end-
of-file marker. The HFS Journal Backup process is aware that this can happen and determines
end-of-file to be any of:

• Normal end-of-file.
• An I/O error of any kind.
• A break in the sequence of date and time stamps in the individual journal records.

(Because it is possible, but not likely, that under extreme stress the journal records can
get out of strict time order, this test is necessarily a bit fuzzy.)

Journal Management Commands

HFS Journal Management Commands consist of three functions, each of which is performed by
CSIHFBAT. They are documented separately here in the attempt to avoid confusion. See “HFS
File Management” above for more information about CSIHFBAT. See “Appendix !- Parameter
Syntax” for information on the syntax and documentation conventions for these commands.

JRNL INIT

Initializes both journal files: HFSJRNA and HFSJRNB. DLBL and EXTENT information
for both files must be available to the job.

The ACCESS command is not needed for this process.

 7/25/2006 Hierarchical File System 40

JRNL BACKUP(filename)

Use this command to backup a journal file to tape. The tape backup is written to file
named “JRNBKUP” on SYS009. The ACCESS command is not needed.

filename Can be either “HFSJRNA” or “HFSJRNB.”

Use the following JCL as a guide for the backup process:

. . .
// ASSGN SYS019,DISK,VOL=SYSWK1,SHR
// DLBL HFSJRNA,'HFS JOURNAL A',0,SD
// EXTENT SYS019,SYSWK1
// DLBL HFSJRNB,'HFS JOURNAL B',0,SD
// EXTENT SYS019,SYSWK1
// ASSGN SYS009,500
// MTC REW,SYS009
// TLBL JRNBKUP,'JRNBKUP'
// LIBDEF *,SEARCH=as needed
// EXEC CSIHFBAT,SIZE=AUTO
JRNL BACKUP(HFSJRNA)
/*
. . .

In order for a subsequent JRNL RECOVER to function properly, you must take
periodic backups of each HFS you wish to recover (See “HFS File Management”
above for information on the BACKUP command.) In addition you must ensure
that:

1. You must switch the journal proper to creating the backup, and
2. You must use the PHYSICAL option of the BACKUP command.

If these steps are not done in this order the results of the JRNL RECOVER process
are unpredictable and you will experience data loss.

 7/25/2006 Hierarchical File System 41

JRNL RECOVER

Use this command to recover an HFS using backed up journal files. The journal files are
read from a tape named “JRNREST” using SYS009. Unlike the other JRNL commands,
here the ACCESS command is relevant and indicates the HFS extent to be recovered.

Use the following JCL as a guide for the restore process.

. . .
// ASSGN SYS019,DISK,VOL=SYSWK1,SHR
// DLBL HFSJRNA,'HFS JOURNAL A',0,SD
// EXTENT SYS019,SYSWK1
// DLBL HFSJRNB,'HFS JOURNAL B',0,SD
// EXTENT SYS019,SYSWK1
// ASSGN SYS009,500
// MTC REW,SYS009
// TLBL JRNREST,'JRNBKUP'
// LIBDEF *,SEARCH=as needed
// EXEC CSIHFBAT,SIZE=AUTO
ACCESS HFS01
JRNL RECOVER
/*
. . .

If it becomes necessary to do a forward recovery using journaled data, you must

1. Ensure you have a Journal Backup for the most recent activity to the
affected HFS file.

2. Initialize the affected HFS (see “HFS File Management” for instruction on
the INITIALIZE command).

3. Restore the most recent PHYSICAL backup tape.
4. Pass Journal Backup data through the JRNL RECOVER process in the

least recent to most recent order. Your tape manager should allow you to
concatenate multiple tape files together into a single execution of the JRNL
RECOVER process.

Failure to follow these steps will cause unpredictable results and data loss.

Irregardless of the procedures used, any HFS activity that was in process when the
failure occurred (that forced you into using the JOURNAL RECOVER process) will
likely be lost. The JRNL RECOVER process cannot resume an in-flight task.

Internally, the JOURNNAL RECOVER process runs a DEEP RECOVERY to clean up
any stray records and partially built files. When recovery is complete, the HFS EXTENT
should be intact and contain all file activity that was completed prior to the original
failure.

 7/25/2006 Hierarchical File System 42

HFS File Interception Facility

When the HFS File Interception Facility is active, HFS examines each open of a DTF. It checks
to see if this is an open of a DTFSD and then scans its internal HLBL table for a matching file
name. If everything matches up, HFS replaces the standard IBM I/O module with the HFS I/O
module (CSIHLMOD) and all subsequent I/O activity is under the control of HFS.

This process is completely transparent to you. Your programs do not need to be aware that this is
happening – in fact, they cannot detect it. HFS uses the DTF in the same manner as IBM LIOCS,
obtaining data from the DTF and setting information back into the DTF in the same manner as
standard VSE LIOCS.

Once it has taken over your I/O activity, HFS is able to provide many services hitherto
unavailable to you.

• Writes data to and retrieves data from an HFS
• Optionally, HFS can encrypt and decrypt this data as needed
• Optionally, HFS can convert the data into a variety of different file formats.

And you don’t have to do a thing to your programs to get this to happen, a simple JCL
change makes it all work.

The remainder of this section describes this JCL change in detail. It’s really not as complex as it
looks as the HLBL, the control statement that defines the file to the HFS File Interception
Facility, was modeled after the standard VSE DLBL and the usage for many of the operands will
be obvious to you.

File Interception is not available with HFS-Lite.

Defining HLBLs

For each file that you want the HFS File Interception Facility to handle you need to supply an
HLBL in the JCL. The HLBL itself is intentionally constructed similar to a DLBL to make it
easier to use and remember.

There are additional commands available to simplify and control the HLBL process.

All of these commands are processed by program CSIHLABL which will need to be inserted into
your JCL ahead of your program which generates the file. This JCL looks like:

// LIBDEF *,SEARCH=(as needed
// EXEC CSIHLABL,SIZE=AUTO
 . . . commands here . . .
/*

See “Appendix A – Parameter Syntax” for notes on command syntax.

 7/25/2006 Hierarchical File System 43

CSIHLABL Commands

OPTION

The OPTION command is itself optional and for the most part needed only if you must
use something other than the defaults.

OPTION [ADD | NOADD] [CLEAR] [SEP(sep)]

ADD | NOADD By default, whenever CSIHLABL is executed, HFS labels for

this partition are removed and replaced by the HLBL(s) that
follow. If you want to add a label to those already established
for the partition then specify
 OPTION ADD

CLEAR HFS labels will remain available in the partition until either an
IPL, a shutdown of the HFS Journaling partition, or a
subsequent execution of CSIHLABL. This could result in a
potential security breach with encrypted data.

To close the security hole, you should add a final execution of
CSIHLABL to the end of your job with OPTION CLEAR to
wipe out the labels and making that space available for other
partitions. This step should be add as a separate VSE JOB in
the JECL like:

/&
// JOB CLEAR
* CLEAR OUT INTERCEPTOR HLBLS
// EXEC CSIHLABL,SIZE=AUTO
 OPTION CLEAR
/*
/&
* $$ EOJ

This step will get executed even if the job is cancelled, or an
abend occurs.

SEP (sep) By default the directory separator is a forward slash, “/”. You
can change this value to anything you want by entering the
separator character here. Quotes are not necessary. You
cannot use a period, any other character on your keyboard is
available for use.

For example, SEP(\) will change the separator to the back
slash used by Microsoft™ on the PC.

It is up to you to ensure that the separator character does not
appear in any of the file names as other than a separator.

 7/25/2006 Hierarchical File System 44

HLBL

The HLBL command defines a file for use by HFS File Interception Facility.

HLBL dlbl.name -

 hfs.file.name -
 retention -
 file type -
 HFS (hfs.extent) -
 DISP (current normal abnormal) -
 [SECURE (algorithm key.number)] -
 [CONVERT (script.name)] -
 [CRLF | NOCRLF] -
 [EOF | NOEOF] -
 [AWS | NOAWS] -
 [APPEND | NOAPPEND] -
 [RENAME | NORENAME] -
 [UNDEF | NOUNDEF]

dbl.name This is the seven character file name (or DLBL name) that

your program will use when attempting to access the file.
This name must be supplied.

hfs.file.name This is the name of the file in the HFS extent. This must be
the fully qualified path name for the file beginning with a
separator character. This name must be supplied.

The name can contain one of the two special keywords.
 %DATE – results in today’s date being placed in the label
 %TIME – results places the current time in the label.
NOTE: this is the date and/or time that the label was
generated by the CSIHLABL program, not the exact date
and time that the file was created. This was done in this
manner to allow step 1 to write the file and step 2 to read it
without having to fiddle with the labels in between.

For an input file, the name can be generic. HFS will select
all files that match the generic name in the indicated
directory, sort them, and return them one at a time to the
input DTFSD. Generic names can use:
 * - any number of any characters, or
 + - any single character.

 7/25/2006 Hierarchical File System 45

Retention This can be either a number of days of retention or it can

be entered in the form yy/nnn which identifies a specific
day and year. This is much the same as available on the
VSE DLBL statement. If an attempt is made to overwrite
an unexpired file, the operator will be prompted with a
request to continue the job or cancel it in much the same
manner as VSE does for normal files. (See Messages for
CSIHLMOD below.) Retention must be supplied.

file type This is two characters and should be either “SD” or
“MT.” In this release of HFS this field is not edited but
must be supplied. Future releases of HFS may take
advantage of this field so it is best to match the dataset
organization of the file as you would normally do.

HFS (hfs.extent) You must supply the DLBL name of the HFS extent that
is to contain this file. This operand must be present
unless the HLBL is preceded by an HEXT command (see
below).

DISP(current normal
abnormal)

Use the DISP option to control the file processing for
normal and/or abnormal terminations. There are three
components to this parameter:

Current Can be OLD or NEW
Normal Determines how to treat the file when the job

step completes normally. This can be either
KEEP or DELETE.

Abnormal Determines how to treat the file when the job
step abnormally terminates. This can be
either KEEP or Delete.

For example, DISP(OLD DELETE KEEP) indicates that
the file should currently exist, it will be deleted upon
normal completion and kept if there is a program failure
of some kind.

SECURE(algorithm key) The SECURE operand causes HFS to encrypt the file
using specifications supplied in the operand. Encryption
is somewhat complex and is described separately below.

CONVERT(script) Use this operand to supply the name of a separately
constructed conversion script. The name can be up to
248 characters in length and must not begin with the
separator character. The file conversion process is non-
trivial and described separately below.

CRLF | NOCRLF HFS can provide some assistance for your programs
when dealing with CRLF delimited files directly. This is
discussed in greater detail in “Appendix C – CRLF
Processing” below.

 7/25/2006 Hierarchical File System 46

EOF | NOEOF By default when an input file is not found in its
associated HFS extent, HFS will cancel the job with a
“File Not Found” message. If you specify EOF, HFS will
instead return an immediate end-of-file indication to your
program in response to the first read attempt.

AWS | NOAWS Specify AWS to cause HFS to generate a file formatted
as an .AWS tape.

AWS formatted developed according to specifications at
www.bustech.com/support/techtips/mas/awstape.htm.

RENAME | NORENAME This option applies to an output file only. If RENAME is
specified and a duplicate file is encountered in the HFS
extent, the file name will be examined, from right to left,
for the number string “000.” If found, the three digit
number will be incremented and the writer attempt re-
tried. The number string can be located anywhere within
the file name.

For example, given a file name of
 “/TEST DATA 000.TXT”
The first file will be written as “/TEST DATA 000.TXT.”
A subsequent file will be “/TEST DATA 001.TXT,” and
so on.

APPEND | NOAPPEND This applies only to an output file and if APPEND is
specified indicates that the output file should be added to
an existing file in the HFS. If no file exists, anew file
will be created.

UNDEF | NOUNDEF Use of DTFSD RECFORM=UNDEF files in assembler
language programs present problems to HFS. This
difficulty is described in detail in “Appendix B –
Undefined Files” below.

 7/25/2006 Hierarchical File System 47

HEXT

This command allows you to specify the HFS extent for use with all subsequent HLBLs.
The hfs.name is the seven character DLBL name of the HFS extent. Any subsequent
HLBL that does not contain the “HFS(name)” operand will use the HFS specified here.

HEXT hfs.name

See the Examples below for samples of this command’s usage,

HSET

The HFS directory given in this command applies to all subsequent HLBL commands. If
an HLBL contains ah HFS name that does not begin with a separator character, then the
actual name used will be constructed by using the directory name given here followed by
the file name in the HLBL.

 HSET hfs.directory

This will be clearer after reviewing the Examples below.

LIST

This command lists the labels currently known to the HFS File Interception Facility.

LIST [PARTITION(ALL | id)]

If the PARTITION operand is omitted, only those labels for the partition that is executing
CSIHLABL will be shown.

If PARTITION is specified it can be either:
 ALL - for all labels known to HFS, or
 Id - for labels for the associated partition (BG, F1, F2, etc.)

The LIST command will not cause the label area to be cleared for this partition (see
above).

 7/25/2006 Hierarchical File System 48

REMOVE

This command will remove a single file from the labels for this partition.

 REMOVE file.name [PARTITION(id)]

If the PARTITION operand is omitted, the label will be removed from the current
partition.

If PARTITION is specified, the id must be the partition id (BG, F1, F2, etc.) where the
removal is to take place.

 7/25/2006 Hierarchical File System 49

CSIHLABL – Examples

1. Simple Case

// EXEC CSIHLABL,SIZE=AUTO
 HLBL FILE1 ‘/TEST FILES/FILE1’ 0 SD HFS=HFS01
 HLBL FILE2 ‘/TEST FILES/FILE02.AWS’ 0 SD HFS=HFS01 AWS
 HLBL FILE3 ‘/SECURE/FILE03’ 3 SD HFS=HFS02 –
 SECURE(AES128C-SHA1 2)
/*

FILE1 will be directed to HFS01 into a file named ‘/TEST FILES/FILE1’. It will be
written in EBCDIC in the clear.

FILE2 will also be directed to HFS01 into a file named ‘/TEST FILES/FILE92.AWS.’ It
will be created in AWS format.

FILE3 will be directed to HFS02 into a file named ‘/SECURE/FILE03’. It will be
encrypted using the AWS128C-SHA1 algorithm and key 2 in the user defined keys.

2. Using HEXT

// EXEC CSIHLABL,SIZE=AUTO
 HEXT HFS01
 HLBL FILE1 ‘/TEST FILES/FILE01.SAMP’ 1 SD
 HLBL FILE2 ‘/SPLISH/SPLASH/BATH’ 0 SD -
 CONVERT(‘TOWEL EM OFF’)
 HLBL FILE3 ‘/SECURE/FILE03’ 3 SD HFS=HFS02 –
 SECURE(AES128C-SHA1 2)
/*

FILE1 will be directed to HFS01 (from the HEXT command) into a file named “/TEST
FILES/FILE01.SAMP.”

FILE2 will likewise be directed to HFS01 into file named “/SPLISH/SPLASH/BATH.”
It will be converted according to the rules described in “TOWEL EM OFF.”

FILE3 will be directed to HFS02 (the HFS= in the HLBL overrides the HEXT setting)
into a file named ‘/SECURE/FILE03’. It will be encrypted using the AWS128C-SHA1
algorithm and key 2 in the user defined keys.

 7/25/2006 Hierarchical File System 50

3. Using HSET

// EXEC CSIHLABL,SIZE=AUTO
 HSET ‘/TEST FILES’
 HLBL FILE1 ‘FILE01.SAMP’ 1 SD HFS=HFS01
 HLBL FILE2 ‘/SPLISH/SPLASH/BATH’ 0 SD HFS(HFS01) -
 CONVERT(‘TOWEL EM OFF’)
/*

FILE1 will be directed to HFS01 into a file named “/TEST FILES/FILE01.SAMP” – the
directory specified in the HSET is prefixed to the file name.

FILE2 will likewise be directed to HFS01 into file named “/SPLISH/SPLASH/BATH.”
Since the HFS name in the HLBL began with the directory separator, the directory
specified in the HSET command is ignored. It will be converted according to the rules
described in “TOWEL EM OFF.”

HSET and HEXT can be used together in the same execution of CSIHLABL. You can also use
multiple HSET and HEXT commands, their settings apply to all subsequent HLBL commands.

 7/25/2006 Hierarchical File System 51

File Encryption

HFS provides several different methods of encryption each of which can be further distinguished
by user-defined keys. Encryption is requested by adding the SECURE operand to the HLBL
command (see “Defining HLBLs” above). The SECURE operand is described below:

File encryption is not available with HFS-Lite.

HLBL SECURE operand

SECURE (algorithm key.number)

 There are two options for the SECURE operand, algorithm and key number.

 Algorithm can be one of:

SDESCBC-NULL

Data Encryption Standard (DES).

SDESCBC-SHA1

Data Encryption Standard (DES). Includes SHA1 Secure
Hash Algorithm in the encryption.

TDESCBC-NULL

Triple Data Encryption Standard.

TDESCBC-SHA1

Triple Data Encryption Standard. Includes SHA1 Secure
Hash Algorithm in the encryption.

AES128C-NULL

Advanced Encryption Standard (AES).

AES128C-SHA1

Advanced Encryption Standard (AES). Includes SHA1
Secure Hash Algorithm in the encryption.

DFLT Your installation default encryption algorithm. See
“Establishing Keys” below for more information.

Details of the various encryption algorithms can be located on the web. (To start,
Google™ “DES”, “TDES”, “AES128” and/or “SHA1” and go from there.)

The Key Number can be any value from 1 to 9999 or the keyword “DFLT”. You must
have a corresponding key value in the table discussed in the next section.

 7/25/2006 Hierarchical File System 52

Establishing Keys

HFS is shipped with three different keys, numbered 1, 2 and 3. These are the same keys
that everybody who installs HFS or TCP/IP for VSE has upon installation. If this bothers
you, these key values can be customized.

For security reasons, the customization process is not documented here. Contact CSI for
instructions on how to make these keys unique for your installation.

 7/25/2006 Hierarchical File System 53

Security Considerations

1. Performance

There’s no getting around it, performance will be not be good on older IBM hardware.
Encryption is not free and involves a substantial amount of CPU overhead. If you are
running on one of the newer Z-series machines, CSI will take advantage of the hardware
CP Assist for Cryptographic Functions (CPACF) and performance is significantly
improved – contact CSI Technical Support for instructions on how to activate the
hardware support.

2. Securing the Key Values

When an HLBL is encountered, the command is printed on SYSLST as part of the
execution of program CSIHLABL. The program looks to see if the SECURE operand is
included, and if so, its contents are suppressed,. For instance, if your HLBL looks like:
 HLBL file1 ’/file on1’ 3 SD HFS-HFS01 SECURE(AES128C-SHA1 2)
It will be printed as:
 HLBL file1 ’/file on1’ 3 SD HFS-HFS01 SECURE(**************)
In this manner, anyone viewing the listing knows that the file has been encrypted but not
how.

This still leaves the actual algorithm and key values in the clear in the JCL in the
POWER RDR queue, and in the text editor that you use to create and maintain the JCL.
Your text editor should have provisions to allow you to secure the contents of the JCL
from prying eyes.

You probably do not want to leave the JCL in the POWER RDR queue in DISP=L for the
simple reason that anyone who knows how to look at the RDR queue using your online
viewer (such as ICCF, BIM-EDIT, RAAD, etc.) can easily discover the encryption
methodology.

Even so, modern third party viewers can look at the JCL as it is executing so some
vulnerability still exists. Check with your vendor. RAAD, available from CSI, can be
restricted by individual job name and queue to clamp down on unauthorized access.

 7/25/2006 Hierarchical File System 54

File Conversion

HFS File Interception can be used to convert data formats when writing and reading files to an
HFS.

• You can easily convert mainframe records in to comma separated CRLF delimited strings
for input to programs on external systems.

• These comma separated CRLF delimited strings can in turn be read by HFS File
Interception and converted back to mainframe data formats (some restrictions apply, see
below).

• The separator does not have to be a comma, any single character can be used.
• Packed decimal and binary fields will be converted properly, with or without a decimal

point.
• File conversion can result in HTML and/or XML output as well.

File conversion is not available with HFS-Lite.

File conversion is activated by adding the CONVERT operand to the HLBL statement as
described previously. Before you can do that, however, you need to supply:

1. File Definition
2. Conversion Rules.

Both the File Definition and Conversion Rules are processed by program CSIHFSDX. The
program’s output is directed to the HFSGEN file described in the “System Requirements” section
of this manual. Use the following JCL as a guide for CSIHFSDX.

// DLBL HFSGEN,… as needed
// EXTENT SYS009,… as needed
// ASSGN SYS009,… as needed
// LIBDEF *,SEARCH=… as needed
// EXEC CSIHFSDX
 csihfsdx commands are placed here
 . . .
/*

A File Definition is processed from encountering a FILE command (see below) and continues
until the END command is encountered. Likewise the Conversion Rules are processed from the
CONVERT command to the ensuing END command. Obviously the END is present for both.
In addition, both File Definition and Conversion Rules contain a TABLE command whose
requirements vary slightly depending on whether it is found within the Conversion Rules or a File
Definition.

Multiple sets of Conversion Rules can be created referencing a single File Definition.

In addition to creating the definitions, CSIHFSDX can also print them out for your review. This
is done with the LIST command.

CSIHFSDX also handles user-supplied translate tables for File Conversion. In the possible
misguided belief that this will happen very rarely, the description of the TRANSLATE command
was moved to “Appendix D – Translate Tables” so as to not clutter up the manual at this point.

 7/25/2006 Hierarchical File System 55

General Commands

There are two commands which fall outside of the File Definition and/or Conversion Rules
processes.

OPTION

OPTION [WARNINGS | NOWARNINGS]

CSIHFSDX can issue several warning messages during processing. You can suppress
these messages by specifying NOWARNINGS.

LIST

LIST {FILE | CONVERT} (file name)

This command will list the contents of the named File Definition or Conversion Rules file
in a columnar format for easy reference.

LIST FILE(name) will list the named File Definition.

LIST CONVERT(name) will list the named Conversion Rules.

 7/25/2006 Hierarchical File System 56

File Definition

Before conversion can take place a file definition must be established. You should be able to
create this easily from an existing COBOL file description.

You can provide multiple File Definitions in a single execution of CSIHFSDX if you want to.

FILE

FILE ‘name’ {RECFM(VAR max) | RECFM(FIX lrecl)}

The FILE command begins the File Definition process and provides a name for the File
Definition. Its operands are:

‘name’ The file name can be from 1 to 248 characters in length and

must begin with a non-blank character. It must not include and
embedded slash ‘/’. This name will be referenced by a
subsequent set of Conversion Rules. The name should be
enclosed in single quotes as shown.

If a definition already exist of this name it will be deleted and
replaced by the definition formed from the commands that
follow the FILE command.

RECVM(VAR max) If the file is a standard variable file, specify RECFM(VAR).
You must also supply the maximum record size.

RECVM(FIX lrecl) If the file is a fixed length file, then you need to specify it as
FIX and also supply the logical record length (lrecl).

 7/25/2006 Hierarchical File System 57

FIELD

FIELD offset name -
[PIC(‘cobol.pic’ cobol.usage) |

 FMT(length type decimals signed)]

Use the FIELD command to define each field in the file.

You will probably find it easiest to define the fields using the COBOL-like PIC operand.
However, when printed using the LIST command (above) the FMT option will be
displayed- no attempt was made to preserve or reformulate the PIC.

Offset This is the offset into the record for this field.

The offset begins from zero.

A special offset of asterisk (‘*’) is available and
indicates that CSIHFSDX is to determine the
offset for this field based on the lengths of the
fields preceding the FIELD command. The first
FIELD command for the File Definition can be
an asterisk.

(See also the discussion on “Offsets” below for
more information.)

Name You need to supply a unique name for the field.
The COBOL name will probably suffice. The
name can be from 1 to 30 characters in length
and must begin with a non-blank character.

The COBOL keyword “FILLER” may be used.

PIC(pic usage) CSIHFSDX supports a subset of the range of
possible COBOL PICs. This is described in
more detail below.

Unlike COBOL, however, you will need to
enclose the PIC pattern in single quotes.

FMT(length type decimals signed) If you prefer, you can explicitly define the field
by supplying its
 Length
 Type – can be ZD, PD, CH or BI
 Number of decimals
 SIGNED | NOSIGNED for numerics

 7/25/2006 Hierarchical File System 58

COBOL PIC support is provided for the most commonly used PICs. Edited PICs are not
supported. Usage COMP and COMP3 are also supported. For example:

PIC LENGTH RESULT
X 1 One byte character
XXX 3 Three byte character
X(30) 30 30 byte character
9999 4 4 byte Zoned Decimal (ZD)
S9999 4 4 byte signed Zoned Decimal
S99999 COMP-3 3 3 byte Packed Decimal (PD)
S9(9)V99 COMP-3 6 6 byte Packed Decimal, two decimal places

identified
S9 COMP 2 2 byte binary (half-word)
S9(4) COMP 2 2 byte binary (half-word)
S9(5) COMP 4 4 byte binary (full-word)
S9(9) COMP 4 4 byte binary (full-word)
S9(10) COMP 8 8 byte binary (double-word)
S9(18) COMP 8 8 byte binary (double-word)

 7/25/2006 Hierarchical File System 59

TABLE

TABLE offset name OCCURS(nnn) DEPENDSON(name)

This defines a table within the record.

Tables complicate things somewhat and the rules for offsets are different when tables are
present. Read the discussion on “Offsets” below carefully when dealing with tables in
your records.

Offset Offset is specified in a similar manner to the FIELD command

described above.

(See also the discussion on “Offsets” below for more
information.)

The end of a table is indicated by the special offset “END”,
like: TABLE END name. The name supplied with TABLE
END must be the name provided in the corresponding initial
TABLE command for the table.

Name A unique name must be supplied for the table. The name is
formulated according to the same rules given above for
FIELD.

OCCURS(nnn) You must supply a OCCURS count for the table. If this is an
OCCURS DEPENDING ON situation, you must supply the
maximum number of table occurrences.

DEPENDSON(name) The name supplied here is the name given to a previously
defined FIELD which must be numeric and contains the
number of table entries in this record.

All FIELD commands encountered subsequent to a TABLE command are considered to
be part of the table itself until a TABLE END is encountered. You must have a TABLE
END for each TABLE you define. In addition the offsets for the FIELDs with the table
restart at zero as they are the offset from the beginning of the table, not the beginning of
the file – this restriction is also covered in the discussion on “Offsets” below.

TABLE commands can be nested, that is a TABLE can be present within the scope of a
preceding TABLE command. Care must be taken in providing offsets in this case – see
“Offsets” below. Both tables need to be terminated with a corresponding TABLE END
command.

 7/25/2006 Hierarchical File System 60

END

END

The END command is required and terminates the File Definition started by a preceding
FILE command.

When the END command is encountered, the preceding File Definition is verified to
ensure that all FIELD names are unique, that the record length matches the calculated
length for fixed length records, all TABLE commands are properly terminated, and that
any DEPNDSON entries exist in the file and are of the proper format.

You must clean up the verification errors, if any, before attempting to use the File
Definition. The actual conversion processor assumes that the File Definition is correct
and bad things will happen if an erroneous File Definition is used.

 7/25/2006 Hierarchical File System 61

Examples

1. Simple Fixed Length Record

FILE 'FIXED TEST FILE 1' RECFM(FIX 50)
 FIELD * RCD-KEY PIC('9999')
 FIELD * RCD-NAME PIC('X(30)')
 FIELD * RCD-TRANSACTION PIC('S9(9)' COMP-3)
 FIELD * RCD-SSN PIC('S9(9)' COMP-3)
 FIELD * RCD-TRAN-TYPE PIC('X')
 FIELD * RCD-TRAN-AMT PIC('S9(7)V99' COMP-3)
 END

This is a simple fixed length record illustrating the various PICs that are
supported. An asterisk was used for all offsets.

2. Fixed Length Record and TABLE

FILE 'FIXED TEST FILE 2' RECFM(FIX 112)
 FIELD * RCD-KEY PIC('9999')
 FIELD * RCD-NAME PIC('X(30)')
 TABLE * TBL_MONTHLY OCCURS(12)
 FIELD 0 RCD-TRAN-TYPE PIC('X')
 FIELD * RCD-TRAN-AMT PIC('S9(7)V99' COMP-3)
 TABLE END TBL_MONTHLY
 FIELD 106 RCD-TOTAL PIC(‘S9(7)V99’ COMP-3)
 FIELD * RCD_FLAG PIC X
 END

Here we introduced a 12 entry table in the midst of the record. Note the offsets
which are discussed in more detail below.

3. Variable Length Record

FILE 'VARIABLE TEST FILE 1' RECFM(VAR 5532)
 FIELD * RCD-KEY PIC('9(9)')
 FIELD * RCD-NAME PIC('X(21)')
 FIELD * RCD-ENTRIES PIC('S9(4)' COMP)
 TABLE * RCD-ACTION OCCURS(100) DEPENDSON(RCD-ENTRIES)
 FIELD * TBL-TIME PIC('9999')
 FIELD * TBL-AMPM PIC('X')
 FIELD * TBL-ACTION PIC('X(50)')
 TABLE END RCD-ACTION
 END

This example illustrates the COBOL OCCURS DEPENDON ON situation.

 7/25/2006 Hierarchical File System 62

Offsets

For the most part, CSIHFSDX is able to determine the proper offset to individual fields
by itself. Calculations are done correctly in both examples 1 and 3 above.

Automatic calculation of offsets will work properly provided that all fields are defined
with corresponding FIELD commands. CSIHFSDX supports the COBOL keyword
“FILLER” in that it is not checked for duplicate file names upon verification.

Automatic calculation may not work correctly if the record contains a table. It will
function correctly if the table is the last thing in the record as illustrated in example 3
above. It will fail, however, if there is non-tabular data following the table as shown in
example 2 above. Here, you will need to supply the actual offset, relative to zero, of the
first field following the TABLE END in order to reset the internal offset calculations.
This was done in example 2 above.

It is critically important that all fields within a table are defined in the File Definition.
CSIHFSDX determines table length depending on the aggregate length of the FIELDS
plus coded offsets found within the TABLE boundaries.

Nested tables should work fine unless the inner table is also the last thing within an outer
table. For example (in COBOL syntax)

10 TABLE-1 OCCURS 10
 15 FIELD PIC…
 15 TABLE-2 OCCURS 10
 20 FIELD PIC…
10 FIELD_NOT_IN_TABLE PIC…

CSIHFSDX will have trouble determining the length of TABLE-1 by itself. If you have
a record of this nature, contact CSI Technical Support for assistance.

 7/25/2006 Hierarchical File System 63

Conversion Rules

In its simplest case a set of Conversion Rules is a list of fields that are to be moved from the
previously defined File Definition to the output file. Not all fields that are defined have to be
moved, nor do they have to be moved in the same order as defined.

Conversion normally implies that numeric data in mainframe format (packed decimal or binary)
will be converted to a character string when moved to the output file. Likewise, when converting
from a CRLF delimited string to mainframe format, the character representation of numeric data
will be converted into the proper mainframe format.

Conversion processing can also create UNIX-like binary files. This involves special handling for
both character and numeric data.

A rudimentary logic capability along with the ability to insert data at definable points expands the
File Conversion beyond simple comma separated, CRLF delimited strings into a variety of output
formats.

The same set of Conversion Rules is used to convert data from or to mainframe format. Note,
however, that comma separated CRLF delimited strings and LINUX-like binary files are the only
formats that can be used to convert character based data back into mainframe formats.

The direction conversion takes depends on how the sequential file is opened. Files opened
for output will cause conversion of mainframe data to string data to take place. Files opened for
input will cause conversion of string data to mainframe format to occur.

 7/25/2006 Hierarchical File System 64

CONVERT

 CONVERT ‘name’ ‘definition’ [ASCII | NOASCII] [SEP(sep)] –
 [NULL(value)] [DECIMAL(value)] –

[TRANSLATE(scope ‘name’)]

The CONVERT command begins the definition of a set of Conversion Rules. It provides
a unique name for this set of rules and identifies the file definition that describes the data.

‘name’ The file name can be from 1 to 248 characters in length and

must begin with a non-blank character. It must not include
and embedded slash ‘/’. The name should be enclosed in
single quotes as shown.

If a set of Conversion Rules already exist of this name it will
be deleted and replaced by the rules formed from the
commands that follow the CONVERT command.

‘definition’ This is the name of a previously defined File Definition.
The File Definition must exist prior to issuing the
CONVERT command.

The definition name can be from 1 to 248 characters in
length and must begin with a non-blank character. It must
not include and embedded slash ‘/’. The name should be
enclosed in single quotes as shown.

ASCII|NOASCII Optional parameter. Specify ASCII to cause CSIHFSDX to
translate the output string to standard ASCII format. The
default is NOASCII which indicates no translation.

SEP(sep) Optional parameter. This provides the field separator to be
used when moving data to the file. The default is a comma.

NULL(value) Optional parameter, relevant to string to mainframe
conversion only. The value entered here will be used to fill
the mainframe record prior to any data movement. The
default is binary zeroes (x’00’). You can enter any character
value here. To change this to a space (x’40’) use the
keyword “SPACE”.

DECIMAL(value) Optional parameter. Provides the character used to indicate
decimal position in the character numeric format. Currently
there are only two choices: “PERIOD” or “COMMA.” If
this is insufficient, contact CSI Technical support for
assistance. The default is a period.

 7/25/2006 Hierarchical File System 65

TRANSLATE(scope
‘name’)

Optional parameter. If present data will be translated
according to the specification in the named table.

The “scope” can be either “ALL” or “NONE”. “ALL”
indicates that each output line is to be translated accoriding
to the named table. “NONE” indicates that translation will
be determined on individual MOVE commands (see below).

The table name can be the keyword “ASCII” which indicates
that the internal EBCDIC to ASCII and ASCII to EBCDIC
tables should be used for the translation. Otherwise, the
name refers to a translate table created using the procedures
discussed in “Appendix D – Translate Tables.”

(A set of code page translation tables are available separately
from CSI.)

 7/25/2006 Hierarchical File System 66

MOVE

 MOVE name [TRUNC | NOTRUNC] [SEP | NOSEP] -
[UPPER | NOUPPER] [LOWER | NOLOWER] –
[TRANSLATE | NOTRANSLATE] -
[DECIMAL | NODECIMAL] –
[BINARY(BIG|LITTLE)] -
[LENGTH(length)] -
[QUOTE (SINGLE | DOUBLE)] –
[EDIT (pattern)]

This command causes data to be transferred in either direction.

Name This is the field name used in the associated File

Definition for this conversion process, which is, of
course, the field that will be moved.

This is the only operand that is required, all
remaining operands are optional.

TRUNC|NOTRUNC By default each field is truncated when moved from
mainframe data format to CRLF delimited string
format. (This operand has no effect on conversion
to mainframe format.)

Leading zeroes are removed from numeric data. If
the field is zero, a single character “0” will be
moved.

Trailing spaces are removed from character data. If
the field is all blanks, no data will be moved to the
string.

The default is TRUNC. Specify NOTRUNC to
turn off field truncation.

SEP|NOSEP Indicates whether the field is to be followed by the
separator character as defined on the CONVERT
command. SEP is the default.

If you do not want the separator character added
here, specify NOSEP. When converting from
string to mainframe format, when a MOVE with
NOSEP is encountered, the conversion process
assumes that the NOSEP field is fixed length.

 7/25/2006 Hierarchical File System 67

UPPER|NOUPPER Use this operand to cause character data to be
translated to upper case prior to conversion. This
operand applies to conversions in both directions.

LOWER|NOLOWER Use this operand to cause character data to be
translated to lower case prior to conversion. This
operand applies to conversions in both directions.

TRANSLATE|NOTRANSLATE Indicates that translation is to occur on this specific
field. This is intended for use in creating UNIX
like binary files where character values need
translation but binary numbers do not.

If the TRANSLATE operand on the relevant
CONVERT command is set to ALL
(“TRANSLATE(ALL name)”) then do not add the
TRANSLATE option on the MOVE command as
this will cause translation to occur twice and the
resulting data will be garbled.

BINARY(BIG|LITTLE) Optional parameter that indicates that the numeric
value is to be handled as a binary value. Specify
“BIG” or “LITTLE” for Big-endian (IBM
mainframe) or Little-endian (Intel) format.

LENGTH(length) You can optionally increase or decrease the field
length of the resulting conversion by using this
option. Normally the length will be the same as
given for the corresponding field definition. This
operand may be useful in conversions for UNIX-
like binary files.

DECIMAL||NODECIMAL Controls the insertion of a decimal character as
needed in numeric data. The character used is
taken from the CONVERT command.

If the number of decimals for the field is zero (“PIC
S9(4)” for example) no decimal point is inserted.

The default is to add the decimal. Specify
NODECIMAL to not insert the decimal character.

QUOTE(SINGLE|DOUBLE) Use this to cause the data to be bracketed by either
single or double quotation marks. If this operand is
omitted, no quotes will be added.

 7/25/2006 Hierarchical File System 68

EDIT(pattern) This operand can be used to apply special rules to

the field when converted – see the following for
more information.

The Edit pattern can be from 1 to 64 bytes in
length.

The Edit pattern is a character string consisting of a single selector character (“@”) and
any number of optional characters as needed to correctly format the data. A couple
examples should make this clear:
 @@@-@@-@@@@ formats an American Social Security Number
 @@/@@/@@ formats a date with slashes
 PRO:@@@@@@@@@ adds the characters “PRO:” to the field.

Truncation rules from the TRUNC|NOTRTUNC operand do not apply when an Edit
pattern is present in the MOVE command. Here leading zeroes and/or trailing spaces
will be fed into the pattern as needed.

The Edit pattern can be applied to both numeric and character data.

Care must be taken to ensure that there are as many selectors, “@”, as significant
characters in the field or unpredictable results can occur. Leading zeroes for numeric
data can often times be safely omitted, and depending on the field contents, trailing
spaces may also be able to be safely ignored. It depends on the individual field formats
and may require some experimentation on your part to develop a proper Edit pattern.

 7/25/2006 Hierarchical File System 69

LITERAL

LITERAL ‘literal’ [SEP | NOSEP]

Literals can be inserted into the converted string as needed.

Literal From 1ot 64 bytes of literal data can be entered into the command. The

literal will be inserted as supplied into the converted string. If
necessary hexadecimal data can be supplied by enclosing the data inside
X’, for example
 LITERAL X’0B423132’

Be aware that this data will be translated according to the translate
options given on the CONVERT command.

SEP|NOSEP Indicates whether a separator character is to be added following the
literal. The default is NOSEP.

When converting from string to mainframe data format, a LITERAL is assumed to be of
the length specified in the command and ignored.

 7/25/2006 Hierarchical File System 70

ADD

ADD string [ASCII | NOASCII]

The ADD command allows for the insertion of up to four special characters.

String The string can be any combination of:

 CR - Carriage return, x’0D’
 LF - Line Feed, x’25’ (or x’0A’ in ASCII)
 FF - Forms Feed, x’0C’

ASCII|NOASCII The Line Feed character (LF above) can take one of two values:
x’25’ in EBCDIC or x’0A’ in ASCII. Use this operand to
determine which is generated by HFS.

ASCII is only needed if you are controlling translation at the
MOVE level. If the CONVERT command specifies
“TRANSLATE(ALL …” then you should let this operand default to
NOASCII.

Typically, lines will be delimited by the presence of an ADD CRLF in the Conversion
Rules.

If you omit the ADD CRLF command in the Conversion Rules, the conversion process
will automatically insert one at the end of the record when converting from mainframe
data to string data.

Likewise, when a CRLF is encountered when converting from string to mainframe data,
end of record is assumed.

 7/25/2006 Hierarchical File System 71

INSERT

INSERT BEFORE|AFTER FIRST|LAST|EVERY LINE|FIELD

The INSERT commands begins an INSERT group which allows for insertion of data at
certain identifiable spots in the mainframe to string conversion process. If the INSERT
command is utilized, conversion from string to mainframe data will be impossible.

The INSERT command provides for 12 different insertion points, not all of which are
useable.

BEFORE FIRST LINE Before any data from the mainframe is processed.

BEFORE FIRST FIELD Before the first field identified by a MOVE command is

processed during conversion. This is not necessarily the
same spot as BEFORE FIRST LINE above.

BEFORE LAST LINE Not processed.

BEFORE LAST FIELD Not processed.

BEFORE EVERY LINE Before every line (record) of mainframe data is
processed.

BEFORE EVERY FIELD Before every field but identified with a MOVE
command.

AFTER FIRST LINE After the first line (record) of mainframe data has been
processed.

AFTER FIRST FIELD After the very first field identified by a MOVE command
is processed.

AFTER LAST LINE After all data from the mainframe has been processed.

AFTER LAST FIELD Not processed.

AFTER EVERY FIELD After every field identified by a MOVE command is
processed.

AFTER EVERY LINE After every line (record) of mainframe data is processed.

The three conditions listed above as “Not Processed” cannot be identified in the File
Conversion process.

All commands following the INSERT command are considered to be part of the insertion
until an ENDINSERT command is encountered. For example, the INSERT commands
below were used in generating HTML output :

 7/25/2006 Hierarchical File System 72

INSERT BEFORE FIRST LINE
 LITERAL '<HTML><BODY BGCOLOR="CYAN">' NOSEP
 LITERAL '<TABLE BORDER="1">' NOSEP
 ENDINSERT
;
 INSERT BEFORE EVERY LINE
 LITERAL '<TR VALIGN=TOP>' NOSEP
 ENDINSERT
 . . .

If needed, MOVE commands can also be placed within an INSERT group.

INSERT groups must be the first thing in the Conversion Rules following the
CONVERT command.

ENDINSERT

The ENDINSERT command terminates an INSERT group – see example above.

END

END

When the END command is encountered, the preceding Conversion Rues are verified to
ensure that all FIELD names are present in the associated File Definition, labels exist for
GOTO and IF commands, and all TABLE commands are properly terminated.

You must clean up the verification errors, if any, before attempting to use the
Conversion Rules. The actual conversion processor assumes that the Conversion Rules
are correct and bad things will happen if an erroneous Conversion Rules are used.

 7/25/2006 Hierarchical File System 73

IF

IF field condition {LITERAL(value)|FIELD(name)} THEN(label)

The IF command provides rudimentary logic capabilities in the Conversion Rules
process. This can be useful for variable length records whose contents vary according to
some record type field in the common part of the data. If the IF command is present,
conversion from string to mainframe data is not guaranteed to work properly.

Field This is the field name used in the associated File Definition for this

IF test.

condition Condition can be one of EQ, NE, LT, LE, GT or GE.

LITERAL(value) If LITERAL is specified then you need to supply the literal value
here. Watch your literal lengths here, if the length of the literal is
not the same as the length of the corresponding field, the unequal
condition will always be set. If necessary, you can define a special
field in the File Definition to accommodate this length disparity.

This operand is mutually exclusive with the FIELD operand
below.

FIELD(name) If FIELD is specified then you need to supply the field name here.
As with literals above, watch your lengths here, if the lengthsof the
two fields are not the same, the unequal condition will always be
set. If necessary, you can define a special field in the File
Definition to accommodate this length disparity.

This operand is mutually exclusive with the LITERAL operand
above.

THEN(label) If the condition in the IF is satisfied you need to supply the label
name of where processing is to continue within the Conversion
Rules (see below). The label name can be from 1 to 16 characters
in length.

 7/25/2006 Hierarchical File System 74

GOTO

GOTO label

The GOTO command does what it implies. The next part of the Conversion Rules to be
processed will be found at the label (see below) specified in the command. If the GOTO
command is present, conversion from string to mainframe data is not guaranteed to
work properly.

Label This is the label name of where processing is to continue within

the Conversion Rules (see below). The label name can be from 1
to 16 characters in length.

LABEL

LABEL name

The LABEL command provides a target in the Conversion Rules for either an IF or
GOTO command.

Name This is a unique name for the label. It can be from 1 to 16

characters in length.

Be careful with labels. Indiscriminate use of LABEL, GOTO and/or IF commands
can result in infinite loops during conversion.

SKIP

The SKIP command indicates that the conversion process is complete at this point in the
Conversion Rules. This may be useful with IF processing. If the SKIP command is
present, conversion from string to mainframe data is not guaranteed to work
properly.

SKIP

 7/25/2006 Hierarchical File System 75

EXAMPLES

1. Simple Conversion

CONVERT 'FIXED TEST 1' 'FIXED TEST FILE 1' -
 DECIMAL(PERIOD) SEP(',')
;
; SIMPLE STRAIGHT-FORWARD COMMA SEPARATED STRING
;
 MOVE RCD-KEY SEP NOTRUNC
 MOVE RCD-NAME SEP
 MOVE RCD-TRANSACTION SEP
 MOVE RCD-SSN EDIT('@@@-@@-@@@@') SEP
 MOVE RCD-TRAN-TYPE SEP
 MOVE RCD-TRAN-AMT NOSEP
 ADD CRLF
 END

2. Conversion using IF

CONVERT 'FIXED TEST 4' 'FIXED TEST FILE 1' -
 DECIMAL(PERIOD) SEP(',')
;
; SELECTIVE EXTRACT OF FILE CONTENTS
;
 IF RCD-TRAN-AMT LT LITERAL('30.00') THEN(KEEPIT)
 SKIP
 LABEL KEEPIT
 MOVE RCD-NAME SEP
 MOVE RCD-TRANSACTION EDIT('@@-@@@@@@-@') SEP
 MOVE RCD-TRAN-AMT NOSEP
 ADD CRLF
 END

 7/25/2006 Hierarchical File System 76

3. Conversion with TABLE

CONVERT 'VAR TEST 2' 'VARIABLE TEST FILE 1' -
 DECIMAL(PERIOD) SEP(',')
;
; TABLE file - one-to-one
;
 MOVE RCD-KEY EDIT('@@@@-@@-@@@') SEP NOTRUNC
 MOVE RCD-NAME SEP
 MOVE RCD-ENTRIES SEP
 TABLE BEG RCD-ACTION OCCURS(100)
 MOVE TBL-AMPM NOSEP
 MOVE TBL-TIME SEP NOTRUNC
 MOVE TBL-ACTION SEP
 TABLE END RCD-ACTION
 ADD CRLF
 END

In this example there is a eon-to-one relationship between the mainframe data record and
the string output. A string formatted by these rules can be converted back to the
mainframe data record.

4. Conversion with TABLE – individual lines

CONVERT 'VAR TEST 1' 'VARIABLE TEST FILE 1' -
 DECIMAL(PERIOD) SEP(',')
;
; TABLE ENTRIES CONVERTED TO LINES
;
 TABLE BEG RCD-ACTION OCCURS(100)
 MOVE RCD-KEY EDIT('@@@@-@@-@@@') SEP NOTRUNC
 MOVE RCD-NAME SEP
 MOVE TBL-AMPM NOSEP
 MOVE TBL-TIME SEP NOTRUNC
 MOVE TBL-ACTION NOSEP
 ADD CRLF
 TABLE END RCD-ACTION
 END

In this example, each individual entry in the table will generate an individual string in the
output file. RCD-KEY and RCD-NAME reside in the fixed part of the record and are
repeated on each output line. In this release of HFS, conversion of string to mainframe
data will generate individual records as well and you will need to write your own code to
merge the records together if necessary.

 7/25/2006 Hierarchical File System 77

Loading SD Files

CSIHFLOD can be used to load a variety of sequential files into an HFS, or unload from
an HFS.

CSIHFLOD is not provided as part of HFS-Lite.

Use the following JCL as a guide for running this program.

* $$ JOB JNM=HFSSD,CLASS=Z
* $$ LST CLASS=L
// JOB HFSSD
/* OPTION NODUMP
// DLBL CSIHFDT, … if needed
// EXTENT SYS019, … if needed
// LIBDEF *,SEARCH=(… as required
// DLBL CSIHBAK, … SD Source file
// EXTENT … as required
// EXEC CSIHFLOD,SIZE=AUTO
 ACCESS CSIHFDT
 SD CSIHBAK RECFM(VARBLK BLKSIZE(1024)) -
 TO ('/LOADED FILE' REPLACE)
/*
/&
* $$ EOJ

Some commands also present in CSIHFBAT were duplicated here as well to simplify
processing.

CSIHFLOD – Commands

OPTION

OPTION [ALLOWNAME | NOALLOWNAME]

ALLOWNAME | NOALLOWNAME

If ALLOWNAME is specified, special
characters such as the colon are allowed to be
present in the file and/or directory names.
The default, NOALLOWNAME, edits the
names as described in the HFS manual.

 7/25/2006 Hierarchical File System 78

ACCESS

This is required for anything other than INITIALIZE and tells the batch program the
DLBL name of the file to be used

ACCESS filename [SEP(‘char’)]

SEP(‘char’) SEP can be used to change the directory separator character from the

default, forward slash (‘/’) to any character you want except for period
(‘.’) which is reserved for HFS internal use as a separator for the file
name extension.

MAKEDIR

 MAKEDIR ‘directory name’

Makes a directory. The name can be up to 256 bytes long. If it contains embedded
spaces, slash or parenthesis enclose it in single quotes (for example: ‘TEST
DIRECTORY ONE’). Otherwise, no quotes are needed.

Command can be abbreviated as MD.

CHANGEDIR

 CHANGEDIR ‘directory name’

Changes to a different directory. The name can be up to 256 bytes long. If it contains
embedded spaces, slash or parenthesis, enclose it in single quotes (for example: ‘TEST
DIRECTORY ONE’). Otherwise, no quotes are needed.

Command can be abbreviated as CD,

 7/25/2006 Hierarchical File System 79

SD

The SD command can be used to load a Sequential Disk file to an HFS or extract a
Sequential Disk file from an HFS.

SD name RECFM(type LRECL(num) BLKSIZE(num)) –
 {TO|FROM} (…)

Name This is the seven character DLBL name. A Corresponding DLBL

and EXTENT must be present in the JCL or available in standard
labels.

RECFM(type Describes the type of sequential file to be accessed. It can be one of
 VARBLK – Variable, Blocked
 VARUNB – Variable, Unblocked
 FIXBLK – Fixed, Blocked
 FIXUNB – Fixed, Unblocked
 SPNBLK – Spanned, Blocked
 SPNUNB – Spanned, Unblocked
 UNDEF – Undefined

Note for Undefined, unpredictable results may occur – see
“Appendix B – Undefined Files” for more information.

LRECL(num) For fixed length records you must supply the logical record length.
This parameter is ignored for other types.

BLKSIZE(num) You must always supply the block size of the Sequential Disk file.
BLKSIZE cannot exceed 32767.

TO|FROM(…) TO tells CSIHFLOD to write an SD file to the HFS. FROM tells
CSIHFLOD to write an HFS file to the SD file. This parameter is
used in several commands and described separately below.

 7/25/2006 Hierarchical File System 80

LIBR

This command allows you to load a member from LIBR into an HFS. Only text
members may be loaded into an HFS.

LIBR lib.sublib name.ext TO(…)

Lib.sublib This is the VSE library and sublibrary that contain the member to

be loaded.

Name.ext This is name and extension of the VSE library member to be
loaded.

This name can be generic. For instance “*.L” will load all members
From the VSE library.sublibrary with extension “L.” File names
will be the same as found on the VSE library, the name on the TO
segment will be ignored (you will still have to supply a non-blank
name to make the parser happy, but it will be ignored).

TO(…) This parameter is used in several commands and described
separately below.

Currently you can only move a member from a VSE library to an
HFS file.

 7/25/2006 Hierarchical File System 81

TO|FROM (…)

The TO|FROM segment is used in both the SD and LIBR commands. Its requirements
are the same for both commands.

TO|FROM (‘name’ [ASCII | NOASCII} –

[REPLACE | NOREPLACE] –
 [SAFE | NOSAFE] APPEND | NOAPPEND])

Name Specify here the name of the file on the HFS. IF the

name begins with a separator character, the name is
assume to be the fully qualified path name for the file.
Without the leading separator, the file will be placed in
the current directory.

ASCII|NOASCII You can request ASCII translation for the file as needed.
The default is NOASCII which is no translation.

Option is ignored on a FROM segment.

REPLACE|NOREPLACE Determines what to do when a duplicate file is
encountered. Specify REPLACE to delete the existing
file and replace it with the new contents. Specify
NOREPLACE to stop processing of the load operation.

Option is ignored for a FROM segment.

SAFE|NOSAFE If REPLACE is specified above, you can qualify the
replacement with this option. SAFE will first rename the
existing file before attempting the load. If any problems
occur during the load, the original file is restored.

Option is ignored for a FROM segment.

APPEND|NOAPPEND Determines whether the file is to be appended to an
existing file in the HFS.

Option is ignored for a FROM segment.

 7/25/2006 Hierarchical File System 82

Examples

SD CSIFILE RECFM(VARBLK BLKSIZE(20000)) –
 TO(‘/directory 1/csifile.txt’ REPLACE SAFE)

This will load the contents of CSIFILE into “/directory 1/csifile.txt” using safe
replacement of supplicates. The file is a variable blocked file.

CD ‘/Sample Directory’
SD CSIFIL1 RECFM(FIXBLK LRECL(100) BLKSIZE(1000)) –
 TO(‘appended files’ REPLACE)
SD CSIFIL2 RECFM(FIXUNB LRECL(100) BLKSIZE(100)) –
 TO(‘appended files’ APPEND)
SD CSIFIL3 RECFM(FIXBLK LRECL(100) BLOSIZE(4000)) –
 TO(‘appended files’ APPEND)

These commands load the contents of three files, CSIFIL1, CSIFIL2 and
CSIFIL3 into “/Sample Directory/appended files”. Each file is fixed length but
has different block sizes. The final contents of the HFS file will be the contents
of the three files specified in the order shown. This file can be processed by any
program with any block size through the use of the HFS File Interception
Facility.

LIBR CSILIB.T HOOBI.A TO(‘/hoobie file’)

VSE library member HOOBI.A from Library CSILIB.T will be written to the
HFS as “hoobie.file.” File is assumed to be 80 byte fixed length records.

SD CSIFILE RECFM(VARBLK BLKSIZE(20000)) –
 FROM(‘/directory 1/csifile.txt’)

Here we will unload the file written above and move it from the HFS to a
standard Sequential Disk file.

 7/25/2006 Hierarchical File System 83

HFS File Recovery

Due to its size and complexity, the Recovery command is discussed separate from the other
commands honored by CSIHFBAT. The RECOVER command runs under CSIHFBAT
discussed above in the section titled “HFS File Management.”

RECOVER mode [AUTO | NOAUTO] [MSG | NOMSG] -
 [RESET | NORESET] [SYS(LST)]

.

Mode There are three modes for recovery:

QUICK QUICK recovery ensures that the HFS directory is

intact and little else. Only the directory itself is
checked for errors.

STANDARD STANDARD does everything QUICK does plus it
verifies that at least the first record of every file
exists and is correct.

DEEP DEEP verifies the directory and attempts to read
each file contained within the HFS in its entirety.
In addition, DEEP recovery will remove any stray
records (records identified in the FAT but not
present on any of the active chains in the HFS).
This is the most through recovery. It is also the
most time consuming. No other tasks/partitions
can be accessing the file while DEEP recovery is
running.

AUTO | NOAUTO This setting applies to QUICK or STANDARD recovery. The option
controls the processing whenever a serious error is encountered. If
AUTO is specified, the recovery process will immediately initiate a
DEEP recovery of the HFS file. If NOAUTO is specified, processing
depends on the MSG option below.

MSG | NOMSG

This setting applies to QUICK or STANDARD recovery. If AUTO is
specified (above) this operand has no meaning. This option determines
whether or not the console request will be issued when serious errors
occur. NOMSG means no console request.

RESET | NORESET Use the RESET option to restore operations to the HFS file following a
failure in a previous RECOVER process. If RESET is specified, all
other options on the RECOVER command will be ignored.

 7/25/2006 Hierarchical File System 84

SYS(LST) This setting determines where the Recovery Control Report is to be

written. Several options are possible:

LST This is the default and indicates SYSLST

000 000 is magic and indicates no report. This is not
recommended.

001-241 The corresponding SYSnumber is assumed to be assigned
to a SYSLST device.

LOG Put the control report on the console - not recommended.

You shouldn’t get too big a warm-and-fuzzy out of successfully passing QUICK recovery – it
doesn’t do much. Even STANDARD is somewhat less than desirable. DEEP recovery is the
only mode that ensures complete recovery of the HFS file.

And then reality intrudes. DEEP recovery may take an intolerably long time for larger files
should the recover process be put on a periodic schedule. Especially since the HFS file will be
intact most of the time.

The AUTO|NOAUTO option helps in this regard. By setting this to AUTO, you can run the
recovery in one of its lighter modes and let it automatically switch to the most thorough
processing should an error be detected. For example RECOVER STANDARD AUTO will run
reasonably quickly and ensure that you can at safely access the directory and get to file
identifications for everything currently contained in the HFS. Even so, it is probably wise to
occasionally run a DEEP recovery to make certain that the file is clean.

The Recovery process produces a control report listing the actions it has taken on your behalf. A
sample of the report follows.

02/25/04 11:56:57 RECOVERY FOR FILE CSIHFDT PAGE 1
BEGIN RECOVERY - D E E P
CSIHFRCV-10 ONE OR MORE FILE RECORDS MISSING - FILE DELETED
 FILE F='DIRECTORY THREE/FILE SEVEN'
FILES DELETED
 F='DIRECTORY THREE/FILE SEVEN'
 1 FILE DELETES PROCESSED
DIRECTORY ENTRIES REMOVED
 F='DIRECTORY THREE/FILE SEVEN'
 1 DIRECTORY REMOVALPROCESSED
RECOVERY COMPLETE
 8 DIRECTORIES
 8 FILES
 51 STRAY RECORDS DELETED
 52 CORRECTIONS MADE

 7/25/2006 Hierarchical File System 85

HFS Online

A single CICS transaction is provided as part of HFS installation. This transaction can be used to
access any HFS in your system provided, of course, that the relevant DLBLs and EXTENTs are
known to CICS, wither in the CICS JCL or standard labels.

HFS Online is not provided with HFS-Lite.

The transaction is HFIL. You are free to change this, as noted in the installation procedure, so
contact your system administrator for the proper transaction to use.

Initial Screen

CSIHFI10 Hierarchical File System 12/19/05
CMD: _______________________ Tree Display File= 09:39:40

CMD Directory Tree
--- --

Enter HFS Extent Name: _______

 PF3:Quit 7:Bwd 8:Fwd 10:Switch
 Copyright 2005 Connectivity Systems, Inc. 1.0A

In order to proceed you must enter the seven character file name for the HFS. You can
enter that name in the CMD area in the upper left hand corner or in the body of the
screen, whichever you prefer. Press enter and you will be presented with the “Tree
View.”

 7/25/2006 Hierarchical File System 86

Tree View

CSIHFI10 Hierarchical File System 12/19/05
CMD: ________________________ Tree Display File=CSIHFDT 09:46:07

CMD Directory Tree
--- --
 _ <DIR> JOURNALLED DIR
 _ <DIR> DIRECTORY 001
 _ <DIR> SUBDIR 001
 _ <DIR> SUBSUBDIR 001
 _ JRNL FILE FIVE
 _ JRNL FILE SIX
 _ JRNL FILE SEVEN
 _ <DIR> DIRECTORY 002
 _ LOADED FILE

 CURRENT SEL: /DIRECTORY 001/SUBDIR 001/SUBSUBDIR 001
 PF3:Quit 7:Bwd 8:Fwd 10:Switch
 Copyright 2005 Connectivity Systems, Inc. 1.0A

The Tree View shows the directory and file structure of the HFS. The HFS being viewed
is identified on the second line of the display. Each level of the directory structure is
indicated by indentation as shown in the sample screen above. Directory entries are
prefixed by “<DIR>.”

At the bottom of the screen the current path is shown. The path is also highlighted in the
Tree View itself.

On the second line of the screen, several commands are recognized:
ACC name Use the ACC command to switch to a different HFS extent. The name

that follows is the seven character DLBL name of the HFS extent.
There must be a space between “ACC” and the name.

BWD Scroll backwards just like PF7.

FWD Scroll forwards just like PF8.

QUIT Quit the HFIL transaction. This is also performed by the CLEAR and
PF3 keys.

REFRESH Refreshes the current view at the ROOT directory level. Any currently
expanded subdirectories will be collapsed as part of this command’s
processing. Use the “R” command, below, to refresh individual
subdirectories.

 7/25/2006 Hierarchical File System 87

On each line, the following commands are recognized:
+ A plus sign will a directory to be expanded (as shown above).

- A minus sign will collapse a previously expanded directory and all subdirectories

with it.

V A ‘V” for View can be entered to display the contents of the individual HFS file.
(A sample View is shown below.)

D Deletes the current file from the HFS.

R Causes the contents of the selected directory to be refreshed on the screen.
Anything outside of this subdirectory is unaffected by this command.

/ A slash (‘/’) will position the display with the line containing the slash as the first
shown on the screen.

If you wish to perform maintenance to the HFS online, such as make directory, you will
need to toggle the display to the Command Line (see below).

Available PF keys are:
PF3 Exit the Tree View display. You can also press the CLEAR key to exit this

display.

PF7 Scroll backward through the Tree View.

PF8 Scroll forward through the Tree View.

PF10 Toggle the transaction to the Command Line presentation (see below).

 7/25/2006 Hierarchical File System 88

View Display

CSIHFI30 Hierarchical File System 12/19/05
CMD: ________________________ File=/VARIABLE CONVERT FILE 09:59:29

 00 30303031 2D30302D 3135382C 47494C4C |0001-00-158,GILL|
 10 4947414E 2C413038 34352C42 524F4B45 |IGAN,A0845,BROKE|
 20 2050524F 46455353 4F525320 4641564F | PROFESSORS FAVO|
 30 52495445 20434F43 4F4E5554 0D0A3030 |RITE COCONUT..00|
 40 30312D30 302D3135 382C4749 4C4C4947 |01-00-158,GILLIG|
 50 414E2C41 30383436 2C52414E 20415741 |AN,A0846,RAN AWA|
 60 5920414E 44204849 440D0A30 3030312D |Y AND HID..0001-|
 70 30302D31 35382C47 494C4C49 47414E2C |00-158,GILLIGAN,|
 80 41313030 302C4449 5343564F 56455245 |A1000,DISCVOVERE|
 90 44205452 49424520 4F462043 414E4E49 |D TRIBE OF CANNI|
 A0 42414C53 204F4E20 49534C41 4E440D0A |BALS ON ISLAND..|
 B0 30303031 2D30302D 3135382C 47494C4C |0001-00-158,GILL|
 C0 4947414E 2C413130 30312C52 414E2041 |IGAN,A1001,RAN A|
 D0 57415920 414E4420 4849440D 0A303030 |WAY AND HID..000|
 E0 312D3030 2D313538 2C47494C 4C494741 |1-00-158,GILLIGA|
 F0 4E2C5030 3432322C 53415645 44205448 |N,P0422,SAVED TH|
 100 45204441 59205448 524F5547 4820534F |E DAY THROUGH SO|
 110 4D452053 494C4C49 4E455353 0D0A3030 |ME SILLINESS..00|
 120 30312D30 302D3234 352C5448 4520534B |01-00-245,THE SK|
 130 49505045 522C4130 3833322C 5741434B |IPPER,A0832,WACK|
 140 45442047 494C4C49 47414E20 4F4E2048 |ED GILLIGAN ON H|
 150 45414420 57495448 20484154 0D0A3030 |EAD WITH HAT..00|
 160 30312D30 302D3234 352C5448 4520534B |01-00-245,THE SK|
 170 49505045 522C4130 3833332C 5741434B |IPPER,A0833,WACK|
 180 45442047 494C4C49 47414E20 4F4E2048 |ED GILLIGAN ON H|
 190 45414420 57495448 20484154 0D0A3030 |EAD WITH HAT..00|
 1A0 30312D30 302D3234 352C5448 4520534B |01-00-245,THE SK|
 1B0 49505045 522C4130 3833342C 5741434B |IPPER,A0834,WACK|
 1C0 45442047 494C4C49 47414E20 4F4E2048 |ED GILLIGAN ON H|
 1D0 45414420 57495448 20484154 0D0A3030 |EAD WITH HAT..00|
 1E0 30312D30 302D3234 352C5448 4520534B |01-00-245,THE SK|
 1F0 49505045 522C4130 3834382C 44495343 |IPPER,A0848,DISC|
 200 4F564552 45442042 524F4B45 4E20434F |OVERED BROKEN CO|
 210 434F4E55 540D0A30 3030312D 30302D32 |CONUT..0001-00-2|
 220 34352C54 48452053 4B495050 45522C41 |45,THE SKIPPER,A|
 230 30383439 2C4C4F4F 4B494E47 20464F52 |0849,LOOKING FOR|
 240 2047494C 4C494741 4E20534F 20484520 | GILLIGAN SO HE |
 250 43414E20 5741434B 2048494D 0D0A3030 |CAN WACK HIM..00|
 ASCII PF3:Quit 7:Bwd 8:Fwd
 Copyright 2005 Connectivity Systems, Inc. 1.0A

The HFS file is displayed in hex and character as shown above.

The fully qualified path name of the file being displayed is shown at the top of the screen.
IF the file name will not fit the available space, it will be shorted on the left and replaced
with an ellipses (“…”).

 7/25/2006 Hierarchical File System 89

There are several commands available in the CMD area at the top of the screen.

ASCII Causes the display portion of each line to be translated from ASCII. This

translation status is shown at the bottom left of the screen. (Note: the
sample screen display above has had the ASCII command applied.)

EBCDIC Causes the display portion of each line to be treated as if it were in
EBCDIC. This is the default state and the initil display of any file will
assume EBCDIC presentation.

TOP Positions the display at the first byte of the file.

BOT Positions the display so that the last bytes of the file are displayed.

+nnn Positions the display forward by the number given. The number is
assumed to be in hexadecimal.

-nnn Positions the display backward by the number given. The number is
assumed to be in hexadecimal.

POSnnn Positions the display to the offset supplied with the command. The offset
is assumed to be in hexadecimal.

Three PF keys are available.

PF3 This will return you to the Tree View Display. You can also press the

CLEAR key to return to the Tree View.

PF7 Scroll backward in the file.

PF8 Scroll forward in the file.

 7/25/2006 Hierarchical File System 90

Command Line

CSIHFI10 Hierarchical File System 12/19/05
CMD: ________________________ CMD Line File=CSIHFDT 10:50:33
 05/11/18 06:42:28 <DIR> DIRECTORY 001
 05/11/18 06:42:28 <DIR> DIRECTORY 002
 05/11/18 06:42:28 25.0K LOADED FILE
 05/12/19 10:41:36 <DIR> HI THERE
 MD NEW Directory
 O.K.
 DIR
 Directory of: ROOT
 05/11/18 06:42:28 <DIR> JOURNALLED DIR
 05/11/18 06:42:28 <DIR> DIRECTORY 001
 05/11/18 06:42:28 <DIR> DIRECTORY 002
 05/11/18 06:42:28 25.0K LOADED FILE
 05/12/19 10:41:36 <DIR> HI THERE
 05/12/19 10:49:28 <DIR> NEW DIRECTORY
 STATS
 FILE: C S I H F D T
 DATE: 1 1 / 1 8 / 0 5
 TIME: 0 6 : 4 2 : 2 7
 RECORDS MAX.: 7,800
 RECORDS USED: 35 0 0 . 4 4 %
 CACHE HITS: 0
 CACHE MISSES: 0
 FILE READS: 98
 FILE WRITES: 3
 cd directory 001
 O.K.
--
 RC=00 CMD:
 CURRENT DIR: /DIRECTORY 001
 PF3:Quit 10:Switch
 Copyright 2005 Connectivity Systems, Inc. 1.0A

This screen was developed to test HFS in a CICS environment and as an exercise in
silliness to emulate PC command line processing. Due to the restrictions of 3270
environment it is of limited usefulness.

As with PC DOS command line, the most recent response is shown at the bottom of the
display area. As commands are entered, least recent activity will scroll of the screen at
the top.

In the sample screen above, the following commands were issued:

DIR - directory of ROOT has partially scrolled off the screen.
MD – created a new subdirectory “NEW DIRECTORY”
DIR – ensuring that new subdirectory was added
STATS – obtained file statistics for the HFS
CD – positioned the current directory to “directory 001”

 7/25/2006 Hierarchical File System 91

Any commands you choose to use should be entered at the CMD area near the bottom of
the screen. The documented commands are:

DIR Responds with a directory listing as illustrated in the sample screen

above.

CD name Change the current directory to the directory named in the command.

MD name Make a new directory of the name in the command.

RD name Remove a directory of this name. The directory must be empty prior
to removal.

STATS Display the HFS file statistics as shown in the sample screen.

There simply isn’t enough room on the 3270 display to implement other HFS commands
such as rename.

CSI recommends that you use the HFS batch utility program for HFS maintenance.

Two PF keys are recognized:

PF3 Exit the Command Line display. You can also press the CLEAR key

to exit this display.

PF10 Toggle the transaction to the Tree View presentation (see above).

 7/25/2006 Hierarchical File System 92

HFS API

HFS provides an Application Programming Interface for your use. The API works in both CICS
and batch for either assembler or COBOL programs.

The HFS API is not available with HFS-Lite.

Four copy books were installed for the API:
 HFSAPI.A - API parameter list (assembler)
 HFSAPI.C - API Parameter list (COBOL)
 HFSAPID.A – API Directory Response (assembler)
 HFSAPID.C – API Directory Response (COBOL)
The fields and use of these copy books is described in greater detail below.

Before using the API be sure to read the “HFS API Gotchas” section below.

Accessing HFS Through the API

VSE BATCH

COBOL : CALL ‘CSIHFAPB’ USING the.parameter.list

ASM: LA R1,the.parameter list
 ST R1,some.field
 LA R1,some.field
 LA R13,save.area DEFINED AS DS 9D
 L R15,=V(CSIHFAPB)
 BASR R14,R15

VSE CICS

EXEC CICS LINK PROGRAM(CSIHFAPI) -
 COMMAREA(the.parameter.list) -
 LENGTH(length.including.data.buffer)

NOTE: you must use CSIHFAPI in CICS and CSIHFAPB in batch.

(See “Installation, Step 5 – CICS Table Additions” for the necessary CICS table entries to enable
the API.)

 7/25/2006 Hierarchical File System 93

HFS API Parameter List

Communications with the HFS API is done using the parameter list as found in the4 HFSAPI.A
and/or HFSAPI.C copy books. The fields contained in the parameter list are described below –
both COBOL names are shown first with the Assembler names on the second line.

Field Name Format Description
HFSAPI-ID
CAHFSID

PIC X(8) This must be set to “CSIHFAPI.”

HFSAPI-FUNC
CAHFUN

PIC X The function code is required. It is described in
more detail below.

HFSAPI-RETURN
CAHFRET

PIC X The completion status of your request is returned
here. It can be:
 0 – O.K.
 4 – End Of File
 8 – Error

HFSAPI-OPTBYTE1
CAHFOP1

PIC X Some functions allow for optional parameters.
See the function description for more
information.

HFSAPI-OPTBYTE2
CAHFOP2

PIC X Some functions allow for optional parameters.
See the function description for more
information.

HFSAPI-SEP
CAHFSEP

PIC X The default directory separator is forward slash
(‘/’). You can optionally change it by putting
your preferred separator here. NOTE: This is
only recognized on the “Open HFS Access”
request.

HFSAPI-HFS-NAME
CAHFNM

PIC X(7) This is the HFS name you want to access. A
corresponding DLBL and extent must be
available in the partition.

HFSAPI-API-TOKEN
CAHFTOK

PIC X(4) This is the HFS API token which is returned to
you by the Open HFS Access request. You need
to supply it on all other calls. (See Token
Handling, below for more information.

HFSAPI-BUF-LENGTH
CAHFBLN

PIC S9(9) COMP Put the length of your buffer area here. (See the
individual function descriptions below for
instructions on how to use this field.)

HFSAPI-RET-LENGTH
CAHFRLN

PIC S9(9) COMP The length of data returned to you by the API is
placed here. This may not be the same size as the
buffer length above. It can even be zero. (See
Get File request, for more information.)

 7/25/2006 Hierarchical File System 94

HFSAPI-ERRMSG1
CAHEM1

PIC X(80) If an error is detected in the API, a message will
be placed here. The first three bytes of the
message are numeric and can be interpreted
programmatically.

HFSAPI-ERRMSG2
CAHEM2

PIC X(80) Occasionally, a 2nd message will also be present.

HFSAPI-ERRMSG3
CAHEM3

PIC X(80) On rare occasions, a 3rd line will be generated by
the API.

HFSAPI-FMT
CARECFM

PIC X You can specify either “F” for fixed or “V” for
variable here. (See the Put File request, for more
information.)

HFSAPI-FIX-LEN
CALRECL

PIC S9(4) COMP If the format (above) is “F” place the record
length here.

HFSAPI-NAME1
CAHFNM1

PIC X(256) Use this field to supply the file name for the API
function you are using. (Assembler programs
should pad this out with either spaces or binary
zeroes.)

HFSAPI-NAME2
CAHFNM2

PIC X(256) For the Rename File request the new file name is
placed here. This field is ignored for all other
API requests.

HFSAPI-BUFFER
CAHFBUF

User-defined Your data buffer starts here. The format and
contents of this area are up to you. NOTE: the
directory requests, “K” and “L”, are returned in
this area formatted as described below.

 7/25/2006 Hierarchical File System 95

HFS API Function Requests

A – Open Access to HFS

This must be the first request you make of the API in any HFS session. This command
starts an HFS session.

HFSAPI-HFS-NAME (CAHFNM) is required.

HFSAPI-SEP (CAHFSEP) is optional and if supplied changes the separator character to
that which you provide here.

Upon successful completion, the HFS API returns HFSAPI-API-TOKEN (CAHFTOK).
This value must be supplied to all subsequent requests for this HFS API session. (See
Token Handling below for more information.)

B – Open File

This request is not necessary and is supplied only because too many programmers have
difficulty wrapping their brains around the concept of being able to read or write a file
without a file open. You do not need to issue this request in order to access files that are
contained within the HFS.

HFSAPI-NAME1 (CAHFNM1) is required. However, it may be overridden by a
subsequent Get File, Put File or End File request.

HFSAPI-FMT (CARECFM) and HFSAPI-FIX-LEN (CALRECL) are optional. They
are meaningless for a subsequent Get File request, and may be overridden by the End File
request when writing to the HFS.

 7/25/2006 Hierarchical File System 96

C – Get File

Use this request to read information stored in the HFS.

HFSAPI-NAME1 (CAHFNM1) is required.

HFSAPI-BUFFER (CAHFBUF) will contain the results of the Get File request to a
maximum number of bytes as specified by HFSAPI-BUF-LENGTH (CAHFBLN). The
API cannot detect a storage overlay, it is up to you to ensure that there is sufficient space
in the buffer to hold the number of bytes you specify in the length.

Upon successful return, the API will place the number of bytes it placed in the buffer in
HFSAPI-RET-LENGTH (CAHFRLN). Since it is unlikely that the file will contain an
integral multiple of data buffers, this number could be less than what you supplied in
HFSAPI_BUF_LENGTH (CAHFBLN) above.

Normally, data is returned along with the End Of File indication, so you need to check
the return length to see if any data was supplied when an End Of File is encountered. It is
possible that End Of File may return zero bytes, but normally there is some data returned.

D – Put File

Use this request to write data to the HFS.

HFSAPI-NAME1 (CAHFNM1) is required.

HFSAPI-BUFFER (CAHFBUF) is assumed to contain the data to be written to the HFS
for a length of HFSAPI-BUF-LENGTH (CAHFBLN).

HFSAPI-OPTBYTE1 (CAHFOP1) can be used to control processing when a duplicate
file is encountered in the HFS. It can be one of:
 A – Append this data to the existing file
 D – Replace the existing file with new data
 R – Rename the file (see below).
Any other value placed in this filed will receive an error with message “210 – Duplicate
File” being placed in HFSAPI-ERRMSG1 (CAHEM1).

If Rename is specified, the file name will be examined from right to left looking for the
character string “000”. When found, this value will be incremented until arriving at a
unique file name. The results of the rename processing will be reflected to you in
HFSAPI-NAME1 (CAHFNM1) whose contents will be changed to the actual name used
by the Put File request.

It is not necessary to have a buffer large enough to transmit the entire file in one Put File
request. Each subsequent Put File request, until terminated by an End File request, will
add data to the current file in the same manner as VSE LIOCS. You can issue as many
Put File requests as needed to the same file.

 7/25/2006 Hierarchical File System 97

E – End File

It is necessary to terminate both the Put File and Get File requests with an End File
request. This frees up storage and removes internal locks so other tasks may process the
file you have just read or written.

HFSAPI-NAME1 (CAHFNM1) is required.

HFSAPI-FMT (CARECFM) and HFSAPI-FIX-LEN (CALRECL) are optional. They
are meaningless when ending a Get File request.

F – Delete File

Use this request to remove a file from the HFS.

HFSAPI-NAME1 (CAHFNM1) is required and names the file to be deleted.

Standard HFS locking rules apply. If the file is currently being processed by your task or
some other task in the VSE machine, the delete will fail.

The Delete File operation is irreversible. There is no undelete capability in HFS.

G – Rename File

 Use this request to rename a file in the HFS.

HFSAPI-NAME1 (CAHFNM1) is required and is the current file name.

HFSAPI-NAME2 (CAHFNM2) is required and is the new file name.

You can use the Rename File function to move a file around in the directory structure. If
you do decide to change the location of the file, then HFSPI-NAME2 (CAHFNM2) must
be the fully qualified path name beginning with a separator.

H – Change Directory

Use this request to change to a different directory in the HFS file structure.

HFSAPI-NAME1 (CAHFNM1) is required.

If the name begins with a separator, it is assumed to be the fully qualified path name
starting from the HFS root directory. Otherwise, HFS assumes that the name refers to a
subdirectory of the current directory.

To change to the root directory, use a one byte name consisting of the separator character
only. You can back up one directory by providing the special name “..” (two periods)
much like you can on a PC.

 7/25/2006 Hierarchical File System 98

I – Get Current Directory

Use this request to obtain the current directory.

The current directory is returned as the fully qualified path name beginning with a
leading separator in HFSAPI-BUFFER (CAHFBUF) which is assumed to be at least 256
bytes long.

J – Make Directory

Use this request to make a new directory in the HFS file structure.

HFSAPI-NAME1 (CAHFNM1) is required.

If the name begins with a separator, it is assumed to be the fully qualified path name
starting from the HFS root directory. Otherwise, HFS assumes that the name refers to a
subdirectory of the current directory.

The current directory is not changed as a result of this request.

K – Get Directory (first)

Use this request to start to retrieve the contents of the current directory.

The Directory process is split into two commands, this one starts the process and Get
Directory (next) continues it. See the following command for more information.

L – Get Directory (next)

Use this request to continue to retrieve the contents of the current directory.

In response to this request, the API returns a single directory entry in HFSAPI-BUFFER
(CAHFBUF) which is assumed to be at least 316 (x’13C’) bytes long. This is a
formatted response which is described in detail below.

When End Of File is raised, a directory response is not returned. This is different from
the way End Of File is treated by the Read File command.

No special effort needs to be made to terminate directory processing. When you have
gotten what you need, simply make another request of the API. Once you do so,
however, the directory process cannot be resumed without starting over with the Get
Directory (first) command. As a result, if you will need to retrieve multiple directory
entries, such as a list of files, you should examine the directory first and same the relevant
file names in a table someplace before attempting to access any individual file.

 7/25/2006 Hierarchical File System 99

M – Backout File

Use this request to clean up the HFS following an uncompleted write operation.

If for some reason you decide that you will not want to write a file, using the Put File
request, after all, you should issue this request to clean up the HFS. This is primarily
intended for CICS HANDLE ABEND and batch STXIT routines.

Failure to backout an incomplete Put Request will lead to the accumulation of stray
records in the HFS. These can be removed using the batch RECOVER command, but it
is preferable to handle it within the API if the situation can be recognized.

Y – Options

Use this request to alter the default operation of HFS for this session.

Currently only two options are supported. More may be added in the future.

The options are to be placed in HFSAPI-BUFFER (CAHFBUF) which is assumed to be
at least 32 bytes long. This area should be padded with spaces to the 32 byte limit.
Options consist of one or two character strings, separated by one or more spaces. The
possible strings are:

JOURNAL
NOJOURNAL

Specify “JOURNAL” to turn on HFS Journaling for write
activity, Specify “NOJOURNAL” to turn off journaling. The
HFS default is “NOJOURNAL.”

ALLOWNAME
NOALLOWNAME

Use “ALLOWNAME” to allow special characters in the file
and/or directory names. The HFS default is
“NOALLOWNAME.”

You can set and reset these options as often as needed within a single HFS session.

 7/25/2006 Hierarchical File System 100

Z – Close Access to HFS

Use this request to terminate the HFS session.

This request frees up resources associated with the HFS session. This is primarily a
memory usage problem and need not be done in batch if your program is about to quit
anyway. It is much more critical in CICS.

HFS acquires approximately 11K of SHARED storage in CICS. 10K can go anywhere,
above or below the line. 1K must be below the line. During the midst of a get or put
process, an additional 4k of go anywhere storage is acquired. SHARED storage does not
go away with the end of a CICS task but must be explicitly freed by the program that
acquired it.

If you do not issue the Close Access to HFS request, your CICS DSA will slowly fill up
with these little bits of SHARED storage. Therefore, in CICS, you really should code a
HANDLE ABEND routine to close off the HFS API in the event of a program failure.

 7/25/2006 Hierarchical File System 101

HFS API Token Handling

When you start an HFS session using the Open HFS Access request, a four byte token is
returned to you by the API. You must supply that same token with all subsequent
requests to the API.

This is not a big problem in a batch environment, but in CICS you may have to pass the
token around in the COMMAREA between programs and/or pseudo-conversational
tasks. Provided CICS remains up, the token will survive for years of inactivity.

Once you have a token, you can use it for any of the other API requests. It is not
necessary and strongly discouraged to obtain a new token for each HFS activity you wish
to perform. With your original token you can read as many files as you want, write as
many files as you want, and browse as many directories as you want, rename files, make
directories, delete files, provided that you do these things one at a time. A file write (or
read) can even take several pseudo-conversational task to complete.

Under the covers, HFS is a state engine. For example, the first Put File request sets the
HFS internal state to Put. All subsequent put requests will continue to write data to the
same file until an End File request is encountered. After the End File request is
processed, HFS is in no particular state and ready to be redirected to some other activity.

This processing can continue indefinitely on the same token. The only reason to obtain a
second token is if it is necessary to read (or write) two or more files simultaneously. In
which case, you will need a unique token for each file that is being processed
simultaneously. But if all you need to do is read one or more files sequentially, then a
single token can handle it: read one file to End of File, issue the End File request and
then start reading the next file.

You absolutely must use the same token to complete a Directory, Put or Get operation
that you used to start it with. If you do not, you will simply get the same record
(directory entry) over and over, or lose all but the last data written to the HFS.

File Formats (HFSAPI-FMT)

This format indicator may or may not be present depending on how the file was created.
If you want to set this yourself, be careful. Fixed format is straight forward. Variable, on
the other hand, is not.

Variable format indicates that the file is formatted like a normal VSE variable unblocked
file with a LLBB preceding the actual record. The LL part contains the length of the
variable record plus the 4 byte length of the LLBB itself. Spanned processing is not
supported in HFS so the BB part must always be x’0000’.

If you want to set format to Variable, then you must ensure that its contents match the
description above.

 7/25/2006 Hierarchical File System 102

HFS API Directory Response

The directory requests, “K” & “L”, return a formatted response in the API parameter
buffer. This response is defined by copy books HFSAPID.A and HFSAPID.C for
assembler and COBOL respectively. The individual fields of the response are:

Name Format Description
HFSDIR-FILE-LENGTH
UDLEN

PIC S(9) COMP Length of the file. Undefined for
Directory entries.

HFSDIR-FILE-DATE
UDDAT

PIC S9(7) COMP-3 Date in YYMMDD format that file
was last written to the HFS.

HFSDIR-FILE-TIME
UDTIM

PIC S9(7) COMP-3 Time in HHMMSS format that the
file was last written to the HFS.

HFSDIR-FMT
UDRECFM

PIC X Can be either “F” or “V” for fixed
or variable format.

HFSDIR-FIX-LEN
UDLRECL

PIC S9(4) COMP If fixed format, the record length is
found here.

HFSDIR-FILE-EXT
UDXOF

PIC X(8) The file extension is placed here. It
is a copy of the extension, if any,
from the name (below). It may not
be present as the file may not
contain an extension.

HFSDIR-CONTENT-SW
UDTYP

PIC X Will be either “A” for ASCII or “B”
for binary.

HFSDIR-DIR-TYPE
UDDIR

PIC X Will be either “D” for directory or
“T” for file.

HFSDIR-NAME
UDNAM

PIC X(256) The name of this entry.

 7/25/2006 Hierarchical File System 103

HFS API Gotchas

It is unfortunately easy to get tangled up in HFS. It is also very simple to avoid these problems.
You should read the following before attempting to use the HFS API.

1. Storage Creep

This is discussed above but worth repeating. HFS acquires approximately 11K of
SHARED storage in CICS. 10K can go anywhere, above or below the line. 1K must be
below the line. During the midst of a get or put process, an additional 4k of go anywhere
storage is acquired. SHARED storage does not go away with the end of a CICS task but
must be explicitly freed by the program that acquired it.

If you do not issue the Close Access to HFS request, your CICS DSA will slowly fill up
with these little bits of SHARED storage. Therefore, in CICS, you really should code a
HANDLE ABEND routine to close off the HFS API in the event of a program failure.

This is not a problem with the batch API as normal VSE end of job processing will clean
up this memory.

2. Stray Records

A “stray record” is a record that HFS thinks is being used but is not contained in any file
or directory chain within the HFS extent. Stray records can accumulate, and left
untended can fill up an entire HFS extent.

Stray records occur when you neglect to issue the End File request following one or more
Put File requests. This can range from one or two records to a great many depending on
how large the file and how much of it got written. Neglecting to issue the End File
requests is either a programming error, hopefully resolved during testing, or an abend
situation.

In CICS, your handle abend routine should check to see if a Put File request is in
progress, and if so, issue the Backout File request to clean up the HFS. It is harder to
handle the abend issue in batch.

Periodically, you will need to run the RECOVER DEEP against your HFS extents. This
will clean up HFS and release all stray records on the file. For your test files, you will
probably need to run this often. For production data, the frequency will depend on the
stability of your program code and is impossible to predict – monthly should suffice.

3. Locked Files

When you issue the first Put File request to an HFS file, the file is locked for write
processing. This prevents any other user in any other partition in the VSE machine from
accessing this file.

In a similar fashion, when you issue the first Get File request to an HFS file, the file is
locked for read processing. Other tasks can also read it, but none may write it until all
read activity has completed.

 7/25/2006 Hierarchical File System 104

These locks are removed when
• An End File request is issued (either read or write),
• A Backout File request is issued for a write operation,
• A batch UNLOCK is run,
• The HFS is initialized, or
• VSE is IPLed.

In other words, if the locks are not handled at the proper time, in the abend handler, the
locks can remain in effect for a long time.

In batch, this can be easily remedied by constructing your JCL like:

* $$ JOB …
// JOB
 . . . Your job statements here
/&
// JOB UNLOCK
 . . . DLBL and EXTENT as needed
// LIBDEF *,SEARCH=(. . .
// EXEC CSIHFBAT
 ACCESS hfsname
 UNLOCK
/*
/&
* $$ EOJ

Here, an extra VSE JOB is added to the end of the POWER JOB. This JOB ensures that
locks are reset for the current partition and the indicated HFS extent. You can repeat the
ACCESD and UNLOCK commands in pairs as many times as needed to be certain that
all HFS extents used in the jobstream are unlocked.

You can and should add the same VSE JOB to your CICS JCL as well. This will clean
up the HFS in case CICS tumbles, but will not remove locks resulting from transaction
failures unless, of course, you are willing to cycle CICS to clean them up.

In an emergency situation, locks can be removed for other than the partition the
CSIHFBAT job is run in, but to paraphrase Elmer Fudd, “Be vewy vewy caweful hewe.”

. . .
// EXEC CSIHFBAT
 ACCESS hfsname
 RELEASE F2
/*

This sequence of commands will release the locks for partition “F2.” This will release all
of the file locks for F2 – there is no way to detect whether a lock is currently valid or the
result of some preceding failure. If there are legitimate locks currently active in CICS
and you run the RELEASE command you run the risk of storage violations and or CICS
crashes resulting from the RELEASE command.

The best recourse in CICS is to include properly coded HANDLE ABEND routines
in the transactions that use the HFS API.

 7/25/2006 Hierarchical File System 105

HFS API HANDLE ABEND Routine

The following steps outline your HANDLE ABEND routine for the HFS API.

1. If the HFS API Token is active (not equal to binary zeroes) continue, otherwise
no further processing is required.

2. If in the midst of a Put File request (determined by examining the function code
in the HFS API Parameter Area, or by other means as necessary) then issue the
Backout File request and proceed to step 4 below.

3. If in the midst of a Get File request issue the End File request.
4. Finally, issue the Close Access to HFS request to clean up storage.

Following these steps should avoid the gotchas mentioned above.

If your task uses one or more EXEC CICS LINKs then each LINK level may need to
contain a HANDLE ABEND routine to properly clean up the HFS in the event of a
transaction abend. This is only a problem when the Token remains open when the
LINKed to program returns to its caller.

 The Close Access to HFS requests assists here by zeroing out the Token once the HFS
API is closed. Your lower LINK level program need only pass this updated Token to its
caller.

In the event that an abend occurs within CSIHFAPI itself, a HANDLE ABEND routine is
already provided in accordance with the steps outlined above. It will zero the token as a
result of this processing.

 7/25/2006 Hierarchical File System 106

HFS API Test Program – CSIHFAPT

This program was developed to test the HFS API in a CICS environment. You may find it useful
to try the various API requests here prior to coding them into your application. The necessary
RDO commands are shown in “Installation: Step 5 – CICS Table Additions.”

When you enter the “HFST transaction, you will be presented with a screen that looks like:

CSIHFAPT Hierarchical File System 03/21/06
 API Test Program 15:28:56
--
 CMD: _ A - Open HFS Access
 SEP: / B - Open File
 FILE: _______ C - Get File
 OPT1: _ D - Put File
 OPT2: _ E - End File
 NAME1: ________________________________ F - Delete File
 NAME2: ________________________________ G - Rename File
 DATA: H - Change Dir
 I - Get Current Dir
 RESP: J - Make Dir
 K - Get Dir (1st)
 L - Get Dir (next)
 M - Backout File
 Y - Option(s)
 Z - Close HFS Access

The eight entry fields correspond directly to fields in the HFS API Parameter list:

CSIHFAPT Screen HFS API Parameter List
CMD HFSAPI-FUNC
SEP HFSAPI-SEP
FILE HFSAPI-HFS-NAME
OPT1 HFSAPI-OPTBYTE1
OPT2 HFSAPI-OPTBYTE2
NAME1 HFSAPI-NAME1
NAME2 HFSAPI-NAME2
DATA HFSAPI-BUFFER

The NAME1 and NAME2 fields are abbreviated to 32 bytes to fit the 3270 screen conveniently.
Likewise, the DATA field is only 32 bytes long. You can, however, read and./or write longer
files by repeatedly issuing the Get File or Put File requests.

The transaction will terminate when you press the CLEAR key.

 7/25/2006 Hierarchical File System 107

Installation

Step 1 – UNZIP

Unzip the HFSJCL.ZIP file in the installation directory. The resulting CSIHFS.BJB file is
in EBCDIC, with 80-byte records and no CRLF.

Step 2 - Upload Distribution Jobstream

Upload the distribution jobstream, CSIHFS.BJB, to the POWER RDR queue. File is in
EBCDIC, with 80 byte records and no CRLF.

Step 3 - Release Install Job

Alter the POWER job (CSIHFS) that was loaded in the RDR Queue to run in a partition
that has labels established for link editing.

A RDR,CSIHFS,DISP=D,CLASS=?

Step 4 - Supply LIBDEF

When job CSIHFS starts up, it will pause allowing you to enter a “// SETPARM”
statement for the library.sublibrary that you want to contain HFS.

* // SETPARM SUBLIB='LIB?.SUBLIB?'
*
// PAUSE ENTER ABOVE SETPARM AS REQUIRED

When the installation job is complete, review the printed output for errors. Common
problems that may occur during the installation job are:

Your library is full. •

•

•

The SETPARM statement was omitted or improperly declared.

Install job was run in a partition not set up for Link Editing.

 7/25/2006 Hierarchical File System 108

Step 5 – CICS Table Additions

In order to use the HFS online component you need to add three programs and one
transaction to CICS. Use the following RDO definitions as a guide.

 DEFINE PROG(CSIHFI10) GROUP(HFIL) LANG(A) EXECKEY(CICS)
 DEFINE PROG(CSIHFI20) GROUP(HFIL) LANG(A) EXECKEY(CICS)
 DEFINE PROG(CSIHFI30) GROUP(HFIL) LANG(A) EXECKEY(CICS)
 DEFINE TRANS(HFIL) GROUP(HFIL) PROG(CSIHFI10) TASKDATAKEY(CICS)

If you will be using the CICS API, then you need to add the following as well:

 DEFINE PROG(CSIHFAPI) GROUP(HFIL) LANG(A) EXECKEY(CICS)
 DEFINE PROG(CSIHFAPS) GROUP(HFIL) LANG(A) EXECKEY(CICS)

If you want to use the CICS API Test Program, add:

 DEFINE PROG(CSIHFAPT) GROUP(HFIL) LANG(A) EXECKEY(CICS)
 DEFINE TRANS(HFST) GROUP(HFIL) PROG(CSIHFAPT) TASKDATAKEY(CICS)

You can name the transaction anything you want to.

It is critically important that the EXECKEY (for programs) and TASKDATAKEY
(for the transaction) be set to “CICS” for CICS Transaction Server. Failure to do so
may result in an abnormal termination of CICS.

 7/25/2006 Hierarchical File System 109

Error Messages

CSIHFLOD Messages

CSIHFLOD-001 E ERROR DETECTED - PROCESSING TERMINATED

One or more errors were detected by CSIHFLOD. The actual error should precede this
message. These are probably errors returned from HFS access. Error(s) need to be
corrected before re-running the job.

CSIHFLOD-003 E LIBR LIBRARY.SUBLIB MISSING

The library,sub-library name on the LIBR command must be corrected.

CSIHFLOD-004 E LIBR FILE NAME MISSING – PROCESING TERMINATED

The file name portion of the LIBR command must be corrected.

CSIHFLOD-005 E TO FILE NAME MISSING – PROCESSING TERMINATED

Most likely the TO segment was omitted. Correct the command and resubmit the job.

CSIHFLOD-006 E BLOCKSIZE INVALID

The BLOCKSIZE operand was found to be invalid. Correct the command and resubmit
the job.

CSIHFLOD-007 E LRECL INVALID

The LRECL operand was found to be invalid. Correct the command and resubmit the
job.

 7/25/2006 Hierarchical File System 110

CSIHRCV Messages

These messages are generated during the RECOVERY process.

CSIHFRCV-01 RECORD TYPE INVALID, FILE ASSUMED

This message is informational and is followed by the name of the file where the error is
detected. Processing continues with the assumption that this is a reference to an HFS file.
Other errors may occur in this situation. If DEBUG is specified on the RECOVER
command, the directory entry for this file will be dumped for analysis.

CSIHFRCV-02 CROSS-LINKED FILE FOUND

This message occurs when a file or directory record is referenced more than once in the
HFS directory. The message is followed by two file names. The first is the name of the
first file that was encountered with this record pointer, and the second is the name of the
current file being investigated by the recovery process. In all recovery types, the second
entry will be removed from the HFS Directory.

This message is considered severe. It will be written to both the report and the system
console. It will only appear on the console once, but may appear several times in the
Recovery Report. For both QUICK and STANDARD recovery, CSIHFRCV will attempt
to upgrade the recovery process to DEEP.

CSIHFRCV-03 SERIOUS ERROR DETECTED, DO YOU WISH TO RECOVER
(YES/NO)

Whenever a severe error is encountered, and recovery is either QUICK or STANDARD,
CSIHFRCV will attempt to upgrade the recovery process to DEEP. If AUTO was
specified on the RECOVER command, this process will take place immediately. If
NOAUTO was specified, CSIHFRCV will prompt the console operator prior to
upgrading the recovery level. If the operator responds “NO” or NOMSG was also
specified, recovery operations will not be upgraded.

CSIHFRCV-04 UPGRADING TO DEEP RECOVERY

This message is written to both the console and the recovery report whenever
CSIHFRCV upgrades the recovery level. Recovery level is always upgraded to DEEP
regardless of where it started from.

CSIHFRCV-05 CANNOT LOCATE FILE HEADER

Each file begins with a File Header record. This record could not be located (probably
due to a bad pointer reference in the directory). This message is followed by the file name
causing the error. In all cases, the offending directory entry will be removed from the
HFS file.

 7/25/2006 Hierarchical File System 111

CSIHFRCV-06 UNEXPECTED FILE TYPE ENCOUNTERED, SHOULD BE
Xxxxx

This message occurs when the directory entry points to the wrong kind of file (for
example, a directory chain points to a file record). In all cases, the directory reference
will be removed from the HFS file. The expected record type is shown in the body of the
message. This message is always followed by the name of the file from the directory
which caused the error.

This message is considered severe. It will be written to both the report and the system
console. It will only appear on the console once, but it may appear several times in the
recovery report. For both the QUICK and STANDARD recovery modes, CSIHFRCV
will attempt to upgrade the recovery process to DEEP.

CSIHFRCV-07 ID RECORD CORRUPTED, CANNOT RECOVER

The initial File Id record has become corrupted. Recovery is not possible. Reload the file
from your most recent backup. This message is always followed by a hexadecimal dump
of the File Id record for problem analysis and troubleshooting.

CSIHFRCV-08 FILE LINKED TO xxxx RECORD, HFS FILE INTEGRITY
CANNOT BE ASSURED

This message is detected during either STANDARD or DEEP recovery. It indicates that a
file is pointed at one of the forbidden records. Forbidden records are the System File Id
record (0), one of the FAT records, one of the Extent records, or the ROOT directory. In
all cases, the associated directory entry will be removed.

This is a serious error; the integrity of the HFS file cannot be assured. The only safe
way to proceed following this error is to reload the HFS file from your most recent
backup. It is not possible to determine whether the file is intact and usable.

CSIHFRCV-09 FILE INCOMPLETE - FILE TRUNCATED

This message is detected by DEEP recovery only. Recovery stopped short of the number
of file records indicated in the allocation table for the individual file. The file will be
truncated to what was found in the HFS. The file length in the directory will be adjusted
accordingly.

CSIHFRCV-10 ONE OR MORE FILE RECORDS

This message is detected by DEEP recovery only. The individual file’s allocation table
has been corrupted somewhere in the middle of the table. Recovery will delete the file as
it is currently unusable.

 7/25/2006 Hierarchical File System 112

CSIHFRCV-11 FILE CROSS-CHAINED TO ANOTHER FILE - FILE DELETED

This message is detected by DEEP recovery only. While verifying the file, a pointer in
the file’s allocation table pointed to a record already associated with another file. The
Recovery process will determine which of the two files is the correct owner of the
affected record, and delete the other.

CSIHFRCV-12 FILE LINKED TO PROHIBITED RECORD – FILE DELETED

This is similar to message 11 above, only this case the file is linked to one of the system-
prohibited records (File Id, FAT, EXTENT and ROOT Directory records). The file will
be deleted.

This is a serious error; the integrity of the HFS file cannot be assured. The only safe
way to proceed following this error is to reload the HFS file from your most recent
backup. It is not possible to determine whether the file is intact and usable

CSIHFRCV-13 FILE CHAIN CORRUPTED (xxxxx RCD DETECTED) - FILE
DELETED

This indicates essentially the same problem as message 12; it has a different number for
tracing and debugging purposes.

CSIHFRCV-14 FILE CHAIN INCOMPLETE - FILE DELETED

This message is detected by DEEP recovery only. An individual file’s allocation table
may extend over one or more 4K records on the HFS. Here the second or subsequent
record could not be read from the HFS. This message should not occur. In the event it
does, it will probably be preceded by errors from the Access Modules.

CSIHFRCV-15 ONE OR MORE ERRORS DURING xxxxxxxxxxx

In order to provide a readable control report, recovery is a two-step process. First the
errors are detected, and second, any deletions or corrections are made. During this second
step one or more errors occurred. This message should not occur. In the event it does, it
will probably be preceded by errors from the Access Modules.

CSIHFRCV-16 RECORD NOT IDENTIFIED IN FAT – FAT CORRECTED

A record was retrieved from the HFS and its corresponding position in the FAT was set
to free. The FAT is corrected immediately when this message appears (this is the only
exception to the two-step processing described in message 15 above).

This situation can arise in all recovery modes; however, the FAT is not guaranteed to be
correct unless you run a DEEP recovery against the HFS file.

 7/25/2006 Hierarchical File System 113

CSIHFRCV-17 CONSOLE RESPONDED "NO" TO UPGRADE QUERY

Informational message placed in the control report when the console operator responds
“NO” to the upgrade prompt (message 03 above).

CSIHFRCV-18 DIRECTORY RECORD NOT FOUND

Informational message describing nature of error. This will probably be followed by
other messages and possibly a wholesale deletion of data from the file.

CSIHFRCV-19 CANNOT RECOVER WITH JOURNAL/CACHE ACTIVE

Recovery cannot be run concurrently with either journaling or cache processing active.

CSIHFRCV-20 SCHEDULE DEEP RECOVERY FILE=xxxxxxx

This message is generated when NOUPDATE was specified and an error was detected
that requires a DEEP recovery to correct. You should schedule a DEEP recovery at the
earliest convenience to correct the file.

CSIHFSDX Messages

These messages are generated during the edit operation on File Definitions, Conversion Rules and
Translate Tables.

CSIHFSDX-001 E FILE NAME MISSING OR INVALID

Correct the File Name and resubmit the job.

CSIHFSDX-002 E RECFM OPERAND MISSING

RECFM operand is required. Correct the command and resubmit the job.

CSIHFSDX-003 E RECFM OPERAND INVALID

 Correct the RECFM operand and resubmit the job.

CSIHFSDX-004 E COMMAND OUT OF SEQUENCE

This error most likely arises from a missing END command from a preceding FILE or
CONVERT command. Correct the command sequence and resubmit the job.

 7/25/2006 Hierarchical File System 114

CSIHFSDX-005 E COMMAND INVALID FOR xxxxxxxx PROCESS

A command available for CONVERT was located within a FILE sequence, or a
command specific to FILE was located in a CONVERT sequence. Correct the command
sequence and resubmit the job.

CSIHFSDX-006 W UNEXPECTED GAP IN OFFSETS, EXPECTED XXXXX

This warning message is issued whenever the offsets in a File Definition are not in strict
numerical order. Only you can determine whether the warning is relevant or not.

CSIHFSDX-007 E FIELD NAME MISSING OR INVALID

A FIELD command must have name associated with it. Correct the command and
resubmit the job,

CSIHFSDX-008 E PIC AND FMT ARE MUTUALLY EXCLUSIVE

You cannot use both PIC and FMT to define a FIELD. Correct the command and
resubmit the job.

CSIHFSDX-009 E EITHER PIC OR FMT MUST BE SUPPLIED

You must supply either a PIC or a FMT for a FIELD definition. Correct the command
and resubmit the job.

CSIHFSDX-010 E PIC INVALID OR UNSUPPORTED

The PIC value you entered is invalid or unsupported (see FIELD definition above). You
may have to use the FMT operand instead of the PIC operand for this FIELD. Correct
the command and resubmit the job.

CSIHFSDX-011 E TABLE COMMAND INCOMPLETE - OCCURS REQUIRED

The TABLE command must specify the OCCURS (or maximum OCCURS) value.
Correct the command and resubmit the job.

CSIHFSDX-012 W RECORD LENGTH WARNING, CALCULATED 99999

The sum of the offsets and field lengths differ from the record length given in the FILE
command. Review the File Definition to ensure that no fields are missing and all fields
are defined with their proper lengths. It may be necessary to use the LIST command to
determine how CSIHFSDX interpreted your input.

CSIHFSDX-013 verify warning messages

There are a variety of warning message issued when the preceding command is verified.
These messages should be self-explanatory.

 7/25/2006 Hierarchical File System 115

CSIHFSDX-014 E FILE DEFINITION NAME MISSING OR INVALID

The CONVERT command must reference a previously defined File Definition. Correct
the command and resubmit the job.

CSIHFSDX-015 E DECIMAL SPECIFICATION INCORRECT, …

Currently only two specifications are allowed for the DECIMAL operand, COMMA and
PERIOD. If you need another, contact CSI Technical Support for Assistance.

CSIHFSDX-016 E FIELD NAME REQUIRED ON MOVE COMMAND

The MOVE command must reference a field defined in the relevant File Definition by
name. Correct the command and resubmit the job.

CSIHFSDX-017 E LITERAL VALUE MISSING

Correct the command and resubmit the job.

CSIHFSDX-018 E ADD COMMAND FORMAT INCORRECT

Refer to the description of the ADD command above to correct the command and
resubmit the job.

CSIHFSDX-019 E IF STATEMENT INCOMPLETE

Refer to the description of the IF command above to correct the command and resubmit
the job.

CSIHFSDX-020 E FIELD AND LITERAL ARE MUTUALLY EXCLUSIVE

Comparisons are a field to either another field or a literal, not to both. Correct the
command and resubmit the job.

CSIHFSDX-021 E EITHER FIELD OR LITERAL MUST BE SUPPLIED

You must supply either a FIELD or a LITERAL to complete the comparison. Correct the
command and resubmit the job.

CSIHFSDX-022 E THEN LABEL MISSING

The IF command must supply a label. Correct the command and resubmit the job.

CSIHFSDX-023 E LABEL NAME MISSING

A label is necessary on the GOTO command. Correct the command and resubmit the
job.

 7/25/2006 Hierarchical File System 116

CSIHFSDX-024 E MORE THAN 32 TABLES DEFINED

The run time component of File Conversion can only handle 32 tables total. Expanding
this limit will require source-level changes to INTERCEPTOR. Contact CSI Technical
Support for assistance.

CSIHFSDX-025 E TABLE NAME MISSING

You must supply a unique name for each TABLE. Correct the command and resubmit
the job.

CSIHFSDX-026 E TRANSLATE FROM OPTIOIN MISSING

You must supply a FROM operand on the TRANSLATE command. Correct the
command and resubmit the job.

CSIHFSDX-027 E TRANSLATE TO OPTION MISSING

You must either supply a complete TO translate table (see “Appendix D – Translate
Tables”) or specify the REVERSE operand on the TRANSLATE command.

CSIHFSDX-028 E TRANSLATE from LINE 99 INVALID DATA

Invalid hexadecimal data was discovered on the indicate line in the indicate FROM or TO
table. Valid hexadecimal data is 0-9, A-F. Correct the command and resubmit the job.

CSIHFSDX-029 E TRANSLATE TABLE NAME MISSING OR INVALID

You must supply a name for this TRANSLATE table. Correct the command and
resubmit the job.

CSIHLBLO Messages

These messages are generated by the open intercept process. These messages will be displayed
on the system console.

CSIHLBLO 001 E CANNOT ACCESS HFS JOURNAL PARTITION

The HFS Journal process must be active in order for HFS File Interception to work
properly – see “System Requirements”. Start the Journal process and resubmit the job.

CSIHLBLO 002 E CANNOT LOAD CSIHLMOD

The VSE library containing HFS phases must be accessible in each partition that will be
using HFS. Correct your JCL and resubmit the job.

 7/25/2006 Hierarchical File System 117

CSIHLBLO 010 I OPEN OF xxxxxxx – ACCEPTED

Informational message displayed on the console whenever HFS File Interception
intercepts I/O for a file.

CSIHLMOD Messages

These messages are generated by the I/O module replacement, CSIHLMOD. These messages
will be displayed on the system console.

CSIHLMOD-002 E WRONG LENGTH RECORD ERROR 99999/99999

This message occurs only if the current record size is greater than the maximum specified
on the FILE command in effect for this job. The File Definition will need to be revisited
before you can continue. Both the maximum record size and the actual record size are
displayed in the message to assist you in correcting the File Definition.

CSIHLMOD-003 E INTERNAL ERROR ON xxxxxxx CANNOT CONTINUE

Additional messages will accompany this message that further define the error. These
will either be from HFS (1xx, 2xx, 3xx or 4xx) or from the File Conversion (6xx). Please
have all messages generated available when contacting CSI Technical Support for
assistance.

CSIHLMOD-004 E CANNOT LOAD CSIHFCVT

The VSE library containing HFS phases must be accessible in each partition that will be
using HFS. Correct your JCL and resubmit the job.

HFBAT Messages

These messages are placed on the console during forward recovery. They each require a console
response.

HFBAT01 I HFS not restored using PHYSICAL option. Continue? (Y/N)

The HFS was restored using NOPHYSICAL (logical) backup tape. It is unlikely that
forward recovery will function properly in this situation.

HFBAT02 I Journal begins after backup. Do you wish to continue? (Y/N)

There is a gap in time between the current state of the HFS file following a restore and
the first Journal tape record encountered. Ensure that you have the proper tape mounted
for the recovery process.

 7/25/2006 Hierarchical File System 118

HFBAT03 I Journal tape completed. Is there another tape (Y/N)?

At end of file for each journal tape you will be prompted for more input. Respond “Y” to
mount a new volume,. Respond “N” when all volumes have been processed.

HFSJ Messages

Journaling produces the following messages. These messages are written to the
VSE console and to the SYSLST output of the journal process.

HFSJ101E CANNOT ALLOCATE GETVIS FOR CSIHF00

This error should not occur. It indicates insufficient 24-bit System GETVIS.

HFSJ102E CSIHF00 NOT IN SVA

This error should not occur. Contact CSI Technical Support for assistance.

HFSJ103E UNABLE TO LOAD CSIHF00 RC=xx

This error should not occur. Contact CSI Technical Support for assistance.
HFSJ104E LESS THAN 256K 24-BIT GETVIS

This error should not occur. Contact CSI Technical Support for assistance.

HFSJ105I nnnnnn QUEUE ENTRIES GENERATED

Informational message indicating the number of buffers generated for journaling
purposes. The program currently attempts to obtain 1,024 buffers.

HFSJ106I HFS JOURNAL OPEN ON HFSJRNA/B

Informational message that indicates which journal file is currently in use. Message is
written when starting the journaling process.

HFSJ107I HFS JOURNAL HFSJRNA/B CLOSED

Informational message indicating that a journal file has been closed. This message
appears when the journal is switched and when the journaling partition is terminated.

HFSJ108I HFS JOURNAL SWITCHED TO HFSJRNA/B

Informational message which indicates that a Journal Switch occurred. Journal output is
now being directed to the file named in the message.

HFSJ110I - ENTER HFS JOURNAL COMMAND

 7/25/2006 Hierarchical File System 119

Console prompt that appears in response to a MSG xx request.

HFSJ111W CANNOT COMPLETE HFS CACHE REQUEST F=xxxxxxx

Program was unable to completely acquire storage for the cache. The size of the cache
will be shown in a subsequent message.

HFSJ112I – <trace messages>

Various self-explanatory trace messages appear under this number.

HFSJ113E – JOURNAL ALREADY ACTIVE

An attempt was made to start HFS journaling while it is currently active in another
partition. Only one journal partition is allowed. If this message was issued as a result of
an earlier abend in the journal partition, the error can be overridden by adding the
FORCE option to the JOURNAL request. This command line has the following syntax:

JOURNAL (BUFFERS(nnn) FORCE)

HFSJ114E – CANNOT ALLOCATE HLBL AREA

Program was unable to allocate the HLBL area. The CSI File Interception Facility will
not work until this problem is corrected. Either run Journaling in a bigger partition, or
adjust other buffers so that the HLBL area can be created.

 7/25/2006 Hierarchical File System 120

Internal Errors

Error messages generated by HFS are prefixed by a three-digit number. Message types are based
on number range and have the following categories:

• 100s – Parameter errors (These represent programming errors and it is unlikely you will
ever see them.)

• 200s – Processing errors
• 300s – Internal errors that require updates to the software. (These messages are severe

and should be reported to CSI Technical Support.)
• 400s – Warning messages
• 600s – Issued by File Conversion Process.

For the most part, these messages are believed to be self-explanatory.

1xx Messages

These messages represent internal parameter errors and should never be seen.

101 - INVALID FUNCTION CODE
102 - FUNCTION NOT IMPLEMENTED YET
103 - FILE NAME MISSING
104 - COMMAND SEQUENCE ERROR
105 - NO RESPONSE BUFFER IN PARM
106 - DIRECTORY NAME MISSING

2xx Messages

These messages are generated during normal operations of HFS. These messages may issued in
response to one of the HFS commands described in this manual. In these cases the message
refers to the immediately preceding command and should be self-explanatory in context.

You may also see them following, or part of, other error messages generated by other programs
which are written to use HFS. In these cases you should refer to the error message from that
product to determine how to proceed with the problem.

If all else fails, contact CSI Technical Support for assistance.

201 - HFS NOT OPEN
202 - GETVIS REQUEST FOR XXX BYTES FAILED RC=
203 - UNABLE TO ACCESS FILE=
204 - UNABLE TO LOAD CSIHF00 RC=
205 - ANCHOR TABLE LIMIT EXCEEDED
206 - BUFFER TOO SHORT
207 - FILE IS LOCKED
208 - INVALID DIRECTORY NAME
209 - PATH NOT FOUND
210 - DUPLICATE FILE
211 - NON-DIRECTORY IN PATH

 7/25/2006 Hierarchical File System 121

212 - INVALID PATH
213 - NO SPACE IN FILE RC=
214 - PATH NAME NOT DIRECTORY
215 - FILE NAME MISSING OR INVALID
216 - ACCESS IN MIDST OF WRITE
217 - FILE NOT FOUND
218 - FILE NAME NOT DATA FILE
219 - DIRECTORY NOT EMPTY
220 - UNKNOWN ALIAS PROCESS
221 - ERROR DETECTED IN MODULE
222 - FILE OPENED READ ONLY
223 - INVALID LOGICAL UNIT
224 - RBA REQUEST BEYOND FILE SIZE RBA=
225 - FILE RECOVERY IN PROGRESS, ACCESS DENIED
226 – SEEK INVALID FOR EXTERNAL FILES
227 – INVALID TOKEN
228 – PRODUCT AUTHORIZATION HAS EXPIRED

3xx Messages

These messages represent serious internal problems with HFS. A series of snap dumps will
be written to SYSLST when these messages occur. Have these snap dumps available when
contacting CSI Technical Support for assistance.

301 - INVALID SEEK ADDRESS
302 - I/O ERROR
303 - RECORD NOT DIRECTORY
305 - DIRECTORY CHAINING ERROR
306 - FILE CHAINING ERROR
307 - INVALID INITIAL EXTENT CANNOT FORMAT
308 - VOLSER MISSING CANNOT FORMAT
309 - EXTENT RECORD INVALID OR MISSING CANNOT CONTINUE
310 - CANNOT ASSIGN TO VOL=xxxxxx |RC=xx
311 - NO EXTENT FOR RCD=xxxxxxxx F=filename
312 – EXTENT IN USE FILE=xxxxxxxx
313 – DIETFAT ERROR R=xxxxxxxx
314 – NO DLBL FOR FILE

 7/25/2006 Hierarchical File System 122

4xx Messages

These messages are warnings. HFS processing continues. These messages should be intercepted
and dealt with internally by HFS and those programs using HFS.

401 - UNABLE TO DELETE COMPLETELY
402 - FILE OPENED READ ONLY
403 – SEEK OUTSIDE OF FILE LIMITS
404 - JOURNALLING NOT ACTIVE
405 - NO JOURNAL ALET

6xx Messages

These messages are generated by the File Conversion process when attempting to convert a file.
They should not occur as the underlying problem should have been detected when the Conversion
Rules were created. If these messages occur, an attempt was made to run conversion processing
with a error-filled set of Conversion Rules.

These messages should be accompanied by message CSIHLMOD-003 (see above) and in all
cases, processing is terminated.

The messages should be self-explanatory.

601-FIELD UNDEFINED: field name
602-LABEL UNRESOLVED: label name
603-IF UNRESOLVABLE

 7/25/2006 Hierarchical File System 123

Appendix A – Parameter Syntax

The syntax of HFS commands is similar to the syntax used by the IBM utility IDCAMS:

• Comments can be inserted on one or more lines by embedding them between “/*” and
“*/” pairs.

• An entire line can be defined as a comment line by keying a semicolon ‘:’ as the first
non-blank character in the line.

• Input lines are parsed from columns1 thru 72
• Commands can be continued on another line by adding a dash (a hyphen) to the right of

the command text, as in the following example:
• An equals sign, “=”, may also be used in the case where a single operand is enclosed in

parenthesis, for example HFS(HFS01) and HFS=HFS01 will both be parsed correctly.
• Either blanks or commas can be used to separate Operands from the Command and from

other Operands.
• Character data must be enclosed in single-quotes if it contains either imbedded spaces,

comma, parenthesis, or the slash. “/”, character. Otherwise the quote marks are optional.

Comments can be freely interspersed with the command, such as:
 HLBL TESTFIL /* DLBL NAME */ -
 ‘/ACCOUNTING/DAILY/TEST’ /* FILE NAME IN HFS */ -
 0 /* RETENTION */ -
 SD /* FILE TYPE */ -
 HFS=HFS01 /* TO H F S 0 1 */

Commands listed in this document use the following syntax conventions:

• Words in UPPER CASE are required and must be typed as shown in the command
description.

• Words in lower case, such as file name, need to be replaced by information meaningful to
you.

• Where there are options, the default value, if any, is underlined.
• Alternative required keywords are enclosed by curly braces ‘{ }’. Choices are separated

by a vertical bar ‘ | ’.
• Optional keywords are enclosed by brackets ‘[]’.
• Short aliases of commands or keywords are listed below the command line.

 7/25/2006 Hierarchical File System 124

Appendix B – Undefined Files

RECFORM=UNDEF files may or may not work with The HFS File Interception Facility. It all
depends on what the underlying data organization truly is. The following discussion was written
by the developer and may get a bit technical.

The HFS File Interception Facility ignores the block size specification in the DTF or COBOL
program. For all practical purposes, sequential files written to an HFS extent by HFS consist of
one great big block – the file size.

This lack of blocking is of no consequence to well-behaved assembler and COBOL programs that
use VSE LIOCS for their file I/O. These programs expect to write and read logical records and
do not need to care how many of them are grouped together into a larger block of data. A well-
behaved COBOL or assembler program shouldn’t care.

In VSE you can write a file using a DTF RECFORM=UNDEF and subsequently read it with a
RECFORM=FIXxxx or RECFORM=VARxxx DTF provided that your user written program
blocked it correctly in the first place. Likewise, you can write a RECFORM=FIXxxx or
RECFORM=VARxxx file and subsequently read it using a DTF RECFORM=UNDEF provided
you are willing to take on the responsibility of properly de-blocking the file yourself when you
read it.

VSE gets away with this by simply writing however many bytes are supplied on the output
RECFORM=UNDEF DTF, and when reading, attempting to read a maximum block and
determining from the CCW how much data was actually retrieved. For VSE this is a piece of
cake.

Since, as stated above, The HFS File Interception Facility does not preserve block size when
writing data to the HFS extent, it cannot read a RECFORM=UNDEF file in complete emulation
of VSE LIOCS.

This is primarily a problem for input RECFORM=UNDEF files only. However, a file written as
RECFORM=UNDEF but blocked properly for a subsequent read as RECFORM=VARxxx will
not work either.

Trying to handle this internally is complicated by the fact that there is no identifiable difference in
the DTF itself between a RECFORM=UNDEF and RECFORM=VARUNB file – not even one
stinking bit. The subtleties between the two DTFs are handled at assembly time.

You can attempt to get around this with the UNDEF operand of the HLBL statement, but this
will only help a tiny bit. Assuming that you have a generic backup utility that reads files as
RECFORM=UNDEF, then adding the UNDEF operand will let the utility program read it.
However, the read will always respond with a maximum block size of data. Consequently, a file
backed up this way can only be reloaded into an HFS File Interception Facility controlled HFS
extent.

The best option is: don’t try to use The HFS File Interception Facility on files written with
or read by a RECFORM=UNDEF DTF.

 7/25/2006 Hierarchical File System 125

Appendix C – CRLF Processing

If you want to process CRLF delimited files directly in your program(s), The HFS File
Interception Facility can provide some assistance for you. The processing described below
occurs if the CRLF operand is included on the HLBL command.

Define your file:

Assembler COBOL
DTFSD RECFORM=VARUNB FD name

 RECORD CONTAINS 0 TO ??? CHARACTERS
 BLOCK CONTAINS 1 RECORD
 DATA RECORD IS DREC.
01 DREC.
 05 DATA PIC X OCCURS 0 TO ??? TIMES
 DEPENDING ON 77-COUNT.

 (or some other field in WORKING-STORAGE)

Write the file

Assembler COBOL
(This depends on other
settings in the DTF. You
will, however, need to
establish a proper LLBB
at the beginning of the
logical record.)

MOVE stringlength TO 77-COUNT.
WRITE name FROM data.area.in.working.storage.

The HFS File Interception Facility will do a couple things here. It will strip off the
leading LLBB provided by COBOL (or created by your assembler code). It will also
ensure that the line ends in a CRLF sequence, and if you do not supply it, HFS will add
the CRLF for you.

Read the file

Assembler COBOL
The data record returned
will include an LLBB as
the first four bytes of the
record area. The length
portion includes the 4
byte length of the LLBB
itself.

COBOL does you a favor(?) by stripping off the LLBB and
presenting you with only the data component of the record.
You are probably stuck scanning the record for the CRLF
sequence to terminate your parsing.

The HFS File Interception Facility scans the data stream looking for the CRLF sequence
and a variable length record to you including the trailing CRLF. The record is returned to
you as if it was obtained from a variable-length-unblocked file to be compatible with
COBOL processing.

HFS does not provide assistance in parsing the string, but it will de-block the file
eliminating some complexity in your code.

 7/25/2006 Hierarchical File System 126

Appendix D – Translate Tables

You can, if necessary, create your own translate tables for use in the File Conversion process.
You can have as many translate tables as needed. Each table becomes a separate file within the
HFSGEN HFS.

To utilize your own translate table, you need to code the TRANSLATE operand on the
CONVERT command when creating Conversion Rules.

Translate tables are maintained using program CSIHFSDX – the same program that you use to
maintain File Definitions and Conversion Rules (see above). Each translate table used in The
HFS File Interception Facility actually consists of two tables:
 FROM – for conversion from EBCDIC to ASCII, and
 TO – for conversion from ASCII to ABCDIC.
The FROM table is used when converting from mainframe data to a string. The TO table is used
when converting a string to mainframe data.

A single command is used to create the table:

TRANSLATE ‘name’ REVERSE | NOREVERSE –
 FROM(hex data) –
 TO(hex data)

Name This is the name for the translate table. This name is

specified in the TRANSLATE operand of the CONVERT
command. The name can be from 1 to 248 characters in
length.

REVERSE|NOREVERSE Specify REVERSE if you want the program to generate
the second table, NOREVERSE if you will be generating
it yourself. NOREVERSE is the default.

FROM(hex data) This defines the 256 byte translate table for conversion
from EBCDIC to ASCII. This table is used when
converting data from mainframe format to CRLF
delimited string, or when the Sequential File is opened for
output.

The example below should make the format obvious.

TO(hex data) This defines the 256 byte translate table for conversion
from ASCII to EBCDIC. This table is used when
converting data from CRL delimited string to mainframe
format, or when the Sequential File is opened for input.

The example below should make the format obvious.

 7/25/2006 Hierarchical File System 127

The example below recreates the standard or default translation tables used by
INTERCEPTOR.

 /* ** */
 /* THIS IS THE STANDARD TRANSLATE TABLE USED */
 /* BY INTERCEPTOR TO TRANSLATE FROM EBCDIC */
 /* TO ASCII AND FROM ASCII TO EBCDIC */
 /* ** */
 TRANSLATE 'ASCII STD' -
 FROM(-
 00010203EC09CA1CE2D2D30B0C0D0E0F -
 10111213EFC508CB1819DCD81A1D1E1F -
 B7B8B9BBC40A171BCCCDCFD0D1050607 -
 D9DA16DDDEDFE004E3E5E9EBB0B19E7F -
 20FF838485A0F28687A49B2E3C282B7C -
 268288898AA18C8B8DE121242A293BAA -
 2D2FB28EB4B5B68F80A5B32C255F3E3F -
 BA90BCBDBEF3C0C1C2603A2340273D22 -
 C3616263646566676869AEAFC6C7C8F1 -
 F86A6B6C6D6E6F707172A6A791CE92A9 -
 E67E737475767778797AADA8D4D5D6D7 -
 5E9C9DFA9F1514ACABFC5B5DE4FEBFE7 -
 7B414243444546474849E8939495A2ED -
 7D4A4B4C4D4E4F505152EE968197A398 -
 5CF6535455565758595AFDF599F7F0F9 -
 30313233343536373839DBFB9AF4EAC9 -
) -
 TO(-
 00010203372D2E2F1605250B0C0D0E0F -
 10111213B6B5322618191C27071D1E1F -
 405A7F7B5B6C507D4D5D5C4E6B604B61 -
 F0F1F2F3F4F5F6F7F8F97A5E4C7E6E6F -
 7CC1C2C3C4C5C6C7C8C9D1D2D3D4D5D6 -
 D7D8D9E2E3E4E5E6E7E8E9BAE0BBB06D -
 79818283848586878889919293949596 -
 979899A2A3A4A5A6A7A8A9C04FD0A13F -
 68DC5142434447485253545756586367 -
 719C9ECBCCCDDBDDDFECFC4AB1B23EB4 -
 4555CEDE49699A9BAB9F5FB8B7AA8A8B -
 3C3D626A6465662021227023727374BE -
 7677788024158C8D8EFF061728299D2A -
 2B2C090AACADAEAF1B3031FA1A333435 -
 36590838BC39A0BFCA3AFE3B04CFDA14 -
 EE8F4675FDEBE1ED90EFB3FBB9EABD41 -
)

This table is included in a sample jobstream loaded into the VSE library during
installation named CSIHFXLT.A. You can load this member into your favorite text
editor to use as a starting point for your modifications.

 7/25/2006 Hierarchical File System 128

The easiest way to create a translate table is to create the FROM table and let the program
generate the TO table for you by specifying the REVERSE operand on the TRANSLATE
command.

Even so, translate tables are tricky as you need to ensure that both representations for the
byte are handled properly. Suppose, for instance, you started with the following table
(also included in CSIHFXLT.A)

 /* *** */
 /* YOU CAN USE THIS A STARTING POINT TO MAKE YOUR */
 /* OWN TRANSLATE TABLE. THIS TABLE MAKES NO */
 /* CHANGES. */
 /* *** */
 TRANSLATE 'NO TRANSLATION' REVERSE -
 FROM(-
 000102030405060708090A0B0C0D0E0F -
 101112131415161718191A1B1C1D1E1F -
 202122232425262728292A2B2C2D2E2F -
 303132333435363738393A3B3C3D3E3F -
 404142434445464748494A4B4C4D4E4F -
 505152535455565758595A5B5C5D5E5F -
 606162636465666768696A6B6C6D6E6F -
 707172737475767778797A7B7C7D7E7F -
 808182838485868788898A8B8C8D8E8F -
 909192939495969798999A9B9C9D9E9F -
 A0A1A2A3A4A5A6A7A8A9AAABACADAEAF -
 B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF -
 C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF -
 D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF -
 E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF -
 F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF -
)

If you wish to change x’40’ to x’20’ (EBCDIC and ASCII space) you need to change the
entry at x’40’ into the table to x’20’ and the entry at x’20’ to x’40’ in order to keep the
translate table in synch with itself. Changes should always be done in pairs like this.

 7/25/2006 Hierarchical File System 129

	MOVE
	Appendix A – Parameter Syntax

